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This is an updated and enlarged version of Chapter 4 of the author’s Dy-
namic Programming and Optimal Control, Vol. II, 4th Edition, Athena
Scientific, 2012. It includes new material, and it is substantially revised
and expanded (it has more than doubled in size).

The new material aims to provide a unified treatment of several mod-
els, all of which lack the contractive structure that is characteristic of the
discounted problems of Chapters 1 and 2: positive and negative cost mod-
els, deterministic optimal control (including adaptive DP), stochastic short-
est path models, and risk-sensitive models. Here is a summary of the new
material:

(a) Stochastic shortest path problems under weak conditions and their
relation to positive cost problems (Sections 4.1.4 and 4.4).

(b) Deterministic optimal control and adaptive DP (Sections 4.2 and 4.3).

(c) Affine monotonic and multiplicative cost models (Section 4.5).

The chapter will be periodically updated, and represents “work in progress.”
It may contain errors (hopefully not serious ones). Furthermore, its refer-
ences to the literature are somewhat incomplete at present. Your comments
and suggestions to the author at dimitrib@mit.edu are welcome.
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In the preceding chapters we dealt with total cost infinite horizon DP prob-
lems with rather favorable structure, where contraction properties played a
fundamental role. In particular, in the discounted problems of Chapters 1
and 2, the Bellman equations for both stationary policy costs and optimal
costs involve (unweighted) contraction mappings, with important analyt-
ical and computational benefits resulting. In summary, our main results
were the following:

(a) The Bellman equations for stationary policy costs and optimal costs
have unique solutions.

(b) There is a strong characterization of optimal stationary policies in
terms of attainment of the minimum in the right side of Bellman’s
equation.

(c) Value iteration (VI) is convergent starting from any bounded initial
condition.

(d) Policy iteration (PI) has strong convergence properties, particularly
for finite-state problems.

The structure of the SSP problems discussed in Chapter 3 is not
quite as favorable, but still has a strong contraction character, thanks to
the role of the proper policies, which have a weighted sup-norm contraction
property (cf. Section 3.3). A key fact is that the noncontractive improper
policies were assumed to produce infinite cost from some initial states (cf.
Assumptions 3.1.1 and 3.1.2), and were effectively ruled out from being
optimal. Thus we obtained strong versions of the results (a)-(d) above in
Sections 3.2, 3.4, and 3.5 (with some modifications in the case of PI, in
order to get around the potential unavailability of an initial proper policy).
We also saw in Section 3.6 examples of the pathological behavior that may
occur if our favorable assumptions of Section 3.1 are violated.

In this chapter we consider total cost infinite horizon DP problems
without any kind of contraction assumption, relying only on the funda-
mental monotonicity property of DP. As a result none of the results (a)-(d)
above hold in any generality, and their validity hinges on additional special
structure if the problem at hand. Important structures in his regard are:

(1) Uniform positivity or uniform negativity of the cost per stage g(x, u, w).
Among others, this ensures that Jπ, the cost function of a policy π, is
well-defined as a limit of the corresponding finite horizon cost func-
tions. Moreover, J∗, the optimal cost function, satisfies Bellman’s
equation, as we will see (although it may not be the unique solution).

(2) A deterministic problem structure. Among others, we will see that
this guarantees that J∗ satisfies Bellman’s equation. (This need not
be true even for finite state SSP problems when the cost per stage
can take both positive and negative values, as we have seen in Section
3.6.)
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(3) The presence of a cost-free and absorbing termination state, as in
the SSP problems of Chapter 3 (but without requiring the strong
assumptions of Section 3.1).

One of our aims is to look for connecting threads and to integrate the
analysis of these special structures.

We start in Section 4.1 with a discussion of two major classes of prob-
lems: those with positive cost per stage, and those with negative cost per
stage. None of the favorable results (a)-(d) above hold for these problems,
and yet some weaker substitutes hold, which may be enhanced through the
exploitation of additional problem structure. Interestingly, the results for
the positive and the negative cost problems are quite different. In some
ways negative cost problems exhibit more benign behavior, while positive
cost problems exhibit more interesting and multifaceted behavior, particu-
larly with respect to VI and PI. Positive cost problems with a finite number
of states have an additional special characteristic, which greatly facilitates
their solution: they are strongly related to the SSP problems of Chapter 3
and can be solved using the methodology of that chapter, as we will discuss
in Section 4.1.4.

In Section 4.2, we will consider some special cases of positive cost
problems that are deterministic and are central in control system design.
While in general, there may be multiple solutions of Bellman’s equation,
and the VI and PI algorithms may fail, we will delineate reasonable condi-
tions under which these difficulties do not occur.

In Section 4.3, we consider infinite horizon versions of the linear
system-quadratic cost problem we considered in Vol. I. This is a special
case of the problem of Section 4.2, so the results proved there apply. We
also discuss ways to apply simulation-based PI to the adaptive control of
linear systems with unknown model parameters.

In Section 4.4, we return to SSP problems, which have neither the
positive nor the negative cost structure of Section 4.1, nor the favorable
proper/improper policy structure of Chapter 3. As we have seen in Section
3.6, J∗, the optimal cost function over all policies, may not be a solution of
Bellman’s equation. Instead, Bellman’s equation may be solved by another
cost function, the optimal over the restricted set of proper policies , which
is also well-behaved with respect to VI.

In Section 4.5, we consider affine monotonic problems, a generaliza-
tion of the positive cost problems of Chapter 6, where the DP mapping
associated with stationary policies has a linear structure. These problems
include multiplicative cost problems, which have a strong connection with
the SSP problems of Section 4.4. In particular, the analog of a proper
policy in SSP is a contractive policy in affine monotonic models. There are
common threads to the analysis of Sections 4.1-4.5, based on an important
notion from abstract DP, called regularity and discussed in the abstract DP
monograph [Ber18] (and its 2022 3rd edition), which relates to restricted
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classes of policies that are well-behaved with respect to VI, and to the cost
that may be achieved by optimization over this class.

Finally, in Section 4.6, we consider a variety of interesting classes of
problems, such as stopping, inventory control, continuous-time models, and
nonstationary and periodic problems.

4.1 POSITIVE AND NEGATIVE COST MODELS

We consider the total cost infinite horizon problem of Section 1.1, whereby
we want to find a policy π = {µ0, µ1, . . .}, where µk : X 7→ U ,

µk(xk) ∈ U(xk), ∀ xk ∈ X, k = 0, 1, . . . ,

that minimizes the cost function

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

, (4.1)

subject to the system equation constraint

xk+1 = f(xk, uk, wk), k = 0, 1, . . . .

In this section we will assume throughout one of the following two condi-
tions, both of which guarantee that the limit in the cost definition (4.1) is
well-defined.

Assumption P: (Positivity) The cost per stage g satisfies

0 ≤ g(x, u, w), for all (x, u, w) ∈ X × U ×W. (4.2)

Assumption N: (Negativity) The cost per stage g satisfies

g(x, u, w) ≤ 0, for all (x, u, w) ∈ X × U ×W. (4.3)

Somewhat paradoxically, problems corresponding to Assumption P
are sometimes referred to in the research literature as negative DP prob-
lems . This choice of name is due to historical reasons. It was introduced in
the paper [Str66], where the problem of maximizing the infinite sum of neg-
ative rewards per stage was considered. Similarly, problems corresponding
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to Assumption N are sometimes referred to as positive DP problems (see
[Bla65], [Str66]). Assumption N arises in problems where there is a nonneg-
ative reward per stage and the total expected reward is to be maximized .

Note that when α < 1 and g is either bounded above or below, we
may add a suitable scalar to g in order to satisfy Eq. (4.2) or Eq. (4.3),
respectively. Because of the discount factor, an optimal policy will not
be affected by this change: the addition of a constant r to g merely adds
(1− α)−1r to the cost of every policy.

One complication arising from unbounded costs per stage is that, for
some initial states x0 and some genuinely interesting admissible policies
π = {µ0, µ1, . . .}, the cost Jπ(x0) may be ∞ (in the case of Assumption
P) or −∞ (in the case of Assumption N). This is true even if there is
discounting. Here is an example:

Example 4.1.1

Consider the scalar system

xk+1 = βxk + uk, k = 0, 1, . . . ,

where xk ∈ ℜ and uk ∈ ℜ, for all k, and β is a positive scalar. The control
constraint is

|uk| ≤ 1,

and the cost is

Jπ(x0) = lim
N→∞

N−1
∑

k=0

αk|xk|.

Consider the policy π̃ = {µ̃, µ̃, . . .}, where µ̃(x) = 0 for all x ∈ ℜ. Then

Jπ̃(x0) = lim
N→∞

N−1
∑

k=0

αkβk|x0|,

and hence

Jπ̃(x0) =
{

0 if x0 = 0
∞ if x0 6= 0

if αβ ≥ 1,

while

Jπ̃(x0) =
|x0|

1− αβ
if αβ < 1.

Note a peculiarity here: if β > 1 the state xk diverges to ∞ or to −∞, but if
the discount factor is sufficiently small (α < 1/β), the cost Jπ̃(x0) is finite.

It is also possible to verify that when β > 1 and αβ ≥ 1 the optimal
cost satisfies

J∗(x0) = ∞, if |x0| ≥ 1
β−1

,

and
J∗(x0) < ∞, if |x0| < 1

β−1
.
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What happens here is that when β > 1 the system is unstable, and in view
of the restriction |uk| ≤ 1 on the control, it may not be possible to force the
state near zero once it has reached sufficiently large magnitude.

The preceding example shows that there is not much that can be done
about the possibility of the cost function being infinite for some policies.
To cope with this situation, we conduct our analysis with the notational
understanding that the costs Jπ(x0) and J*(x0) may be ∞ (or −∞) under
Assumption P (or N, respectively) for some initial states x0 and policies
π. In other words, we consider Jπ(·) and J*(·) to be extended real-valued
functions. In fact, the entire subsequent analysis is valid even if the cost
per stage g(x, u, w) is ∞ or −∞ for some (x, u, w), as long as Assumption
P or Assumption N holds, respectively, although for simplicity, we assume
that g is real-valued.

The line of analysis of this section is fundamentally different from the
one of the discounted problem of Section 1.2. For the latter problem, the
analysis was based on ignoring the “tails” of the cost sequences, which is
consistent with a contractive structure. In this section, the tails of the cost
sequences may not be small, and for this reason, the control is much more
focused on affecting the long-term behavior of the state. For example, let
α = 1, and assume that the stage cost at all states is nonzero except for a
cost-free and absorbing termination state. Then, a primary task of control
under Assumption P (or Assumption N) is roughly to bring the state of
the system to the termination state or to a region where the cost per
stage is nearly zero as quickly as possible (as late as possible, respectively).
Note the difference in control objective between Assumptions P and N. It
accounts to some extent for some strikingly different results under the two
assumptions.

In what follows in this section, we present results that characterize
the optimal cost function J*, as well as optimal stationary policies. We also
discuss VI and give conditions under which it converges to the optimal cost
function J*. In the proofs we will often need to interchange expectation and
limit in various relations. This interchange is valid under the assumptions
of the following theorem.

Monotone Convergence Theorem: Let P = (p1, p2, . . .) be a prob-
ability distribution over X = {1, 2, . . .}. Let {hN} be a sequence
of extended real-valued functions on X such that for all i ∈ X and
N = 1, 2, . . . ,

0 ≤ hN (i) ≤ hN+1(i).

Let h : X 7→ [0,∞] be the limit function h(i) = limN→∞ hN (i). Then
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lim
N→∞

∞
∑

i=1

pihN (i) =
∞
∑

i=1

pi lim
N→∞

hN (i) =
∞
∑

i=1

pih(i).

Proof: We have
∞
∑

i=1

pihN(i) ≤
∞
∑

i=1

pih(i).

By taking the limit, we obtain

lim
N→∞

∞
∑

i=1

pihN (i) ≤
∞
∑

i=1

pih(i),

so there remains to prove the reverse inequality. For every integer M ≥ 1,
we have

lim
N→∞

∞
∑

i=1

pihN (i) ≥ lim
N→∞

M
∑

i=1

pihN(i) =

M
∑

i=1

pih(i),

and by taking the limit asM → ∞ the reverse inequality follows. Q.E.D.

Note that the conclusion of the proposition also holds if instead of
monotonically increasing, the sequence {hN} is monotonically decreasing
(we simply use the sequence {−hN} in the preceding proof).

4.1.1 Bellman’s Equation

Similar to all the infinite horizon problems considered so far, the optimal
cost function satisfies Bellman’s equation.

Proposition 4.1.1: (Bellman’s Equation) Under either Assump-
tion P or N the optimal cost function J* satisfies

J*(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ*
(

f(x, u, w)
)}

, x ∈ X,

or, equivalently,
J* = TJ*.

Proof: For any admissible policy π = {µ0, µ1, . . .}, consider the cost Jπ(x)
corresponding to π when the initial state is x. We have

Jπ(x) = E
w

{

g
(

x, µ0(x), w
)

+ Vπ

(

f(x, µ0(x), w)
)}

, (4.4)
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where, for all x1 ∈ X ,

Vπ(x1) = lim
N→∞

E
wk

k=1,2,...

{

N−1
∑

k=1

αkg
(

xk, µk(xk), wk

)

}

.

Thus, Vπ(x1) is the cost from stage 1 to infinity using π when the initial
state is x1. We clearly have

Vπ(x1) ≥ αJ*(x1), for all x1 ∈ X.

Hence, from Eq. (4.4),

Jπ(x) ≥ E
w

{

g
(

x, µ0(x), w
)

+ αJ*
(

f(x, µ0(x), w)
)}

≥ min
u∈U(x)

E
w

{

g(x, u, w) + αJ*
(

f(x, u, w)
)}

.

Taking the minimum over all admissible policies, we obtain

min
π

Jπ(x) = J*(x)

≥ min
u∈U(x)

E
w

{

g(x, u, w) + αJ*
(

f(x, u, w)
)}

= (TJ*)(x).

Thus there remains to prove that the reverse inequality also holds. We
prove this separately for Assumption N and for Assumption P.

Assume P. The following proof of J* ≤ TJ* under this assumption
would be considerably simplified if we knew that there exists a µ such
that TµJ* = TJ*. Since in general such a µ need not exist, we introduce a
positive sequence {ǫk}, and we choose an admissible policy π = {µ0, µ1, . . .}
such that

(Tµk
J*)(x) ≤ (TJ*)(x) + ǫk, x ∈ X, k = 0, 1, . . .

Such a choice is possible because under P, we have 0 ≤ J*(x) for all x. By
using the inequality TJ* ≤ J* shown earlier, we obtain

(Tµk
J*)(x) ≤ J*(x) + ǫk, x ∈ X, k = 0, 1, . . .

Applying Tµk−1
to both sides of this relation, we have

(Tµk−1
Tµk

J*)(x) ≤ (Tµk−1
J*)(x) + αǫk

≤ (TJ*)(x) + ǫk−1 + αǫk

≤ J*(x) + ǫk−1 + αǫk.
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Continuing this process, we obtain

(Tµ0Tµ1 · · ·Tµk
J*)(x) ≤ (TJ*)(x) +

k
∑

i=0

αiǫi.

By taking the limit as k → ∞ and noting that

J*(x) ≤ Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J0)(x) ≤ lim

k→∞
(Tµ0Tµ1 · · ·Tµk

J*)(x),

where J0 is the zero function, it follows that

J*(x) ≤ Jπ(x) ≤ (TJ*)(x) +

∞
∑

i=0

αiǫi, x ∈ X.

Since the sequence {ǫk} is arbitrary, we can take
∑∞

i=0 α
iǫi as small as

desired, and we obtain J*(x) ≤ (TJ*)(x) for all x ∈ X . Combining this
with the inequality J*(x) ≥ (TJ*)(x) shown earlier, the result follows
(under Assumption P).

Assume N and let JN be the optimal cost function for the correspond-
ing N-stage problem

JN (x0) = min
π

E

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

.

We first show that

J*(x) = lim
N→∞

JN (x), x ∈ X. (4.5)

Indeed, in view of Assumption N, we have J* ≤ JN for all N , so

J*(x) ≤ lim
N→∞

JN (x), x ∈ X. (4.6)

Also, for all π = {µ0, µ1, . . .}, we have

E

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≥ JN (x0),

and by taking the limit as N → ∞,

Jπ(x) ≥ lim
N→∞

JN (x), x ∈ X.

Taking the minimum over π, we obtain J*(x) ≥ limN→∞ JN (x), and com-
bining this relation with Eq. (4.6), we obtain Eq. (4.5).
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For every admissible µ, we have

TµJN ≥ JN+1,

and by taking the limit as N → ∞, and using the monotone convergence
theorem and Eq. (4.5), we obtain

TµJ* ≥ J*.

Taking the minimum over µ, we obtain TJ* ≥ J*, which combined with
the inequality J* ≥ TJ* shown earlier, proves the result under Assumption
N. Q.E.D.

Similar to the case of the discounted and SSP problems of the preced-
ing chapters, we also have a Bellman equation for each stationary policy.

Proposition 4.1.2: Let µ be a stationary policy. Then under As-
sumption P or N, we have

Jµ(x) = E
w

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

, x ∈ X,

or, equivalently,
Jµ = TµJµ.

Uniqueness of Solution of Bellman’s Equation

Contrary to discounted problems with bounded cost per stage, the optimal
cost function J* under Assumption P or N need not be the unique solution
of Bellman’s equation. This is certainly true when α = 1, since in this case
if J(·) is any solution, then for any scalar r, J(·)+ r is also a solution. The
following is an example where α < 1.

Example 4.1.2

Let X = [0,∞) (or X = (−∞, 0]) and

g(x, u,w) = 0, f(x, u,w) =
x

α
.

Then for every β, the function J given by J(x) = βx for all x ∈ X, is a solution
of Bellman’s equation, so there are infinitely many solutions. Note, however,
that there is a unique solution within the class of bounded functions, the zero
function J0(x) ≡ 0, which is the optimal cost function for this problem. More
generally, it can be shown by using the following Prop. 4.1.3 that if α < 1 and
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there exists a bounded function that is a solution of Bellman’s equation, then
that function must be equal to the optimal cost function J∗ (see Exercise
4.7).

Later in this chapter we will also encounter finite-state determinis-
tic shortest path examples where α = 1 and the set of solutions of Bell-
man’s equations is infinite (see Example 4.2.1 in Section 4.2), and a linear-
quadratic infinite horizon problem where Bellman’s equation has exactly
two solutions within the class of quadratic functions (see Example 4.2.2 in
Section 4.2, and also the discussion on the Riccati equation of Section 3.1
in Vol. I). The optimal cost function J*, however, has the property that
it is the smallest (under Assumption P) or largest (under Assumption N)
fixed point of T in the sense described in the following proposition.

Proposition 4.1.3:

(a) Under Assumption P, if J̃ : X 7→ (−∞,∞] satisfies J̃ ≥ T J̃ and
either J̃ is bounded below and α < 1, or J̃ ≥ 0, then J̃ ≥ J*.

(b) Under Assumption N, if J̃ : X 7→ [−∞,∞) satisfies J̃ ≤ T J̃ and
either J̃ is bounded above and α < 1, or J̃ ≤ 0, then J̃ ≤ J*.

Proof: (a) Under Assumption P, let r be a scalar such that J̃(x) + r ≥ 0
for all x ∈ X and if α ≥ 1 let r = 0. For any sequence {ǫk} with ǫk > 0, let
π̃ = {µ̃0, µ̃1, . . .} be an admissible policy such that, for every x ∈ X and k,

E
w

{

g
(

x, µk(x), w
)

+ αJ̃
(

f
(

x, µk(x), w
))}

≤ (T J̃)(x) + ǫk. (4.7)

Such a policy exists since (T J̃)(x) > −∞ for all x ∈ X . We have for any
initial state x0 ∈ X ,

J*(x0) = min
π

lim
N→∞

E

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≤ min
π

lim inf
N→∞

E

{

αN
(

J̃(xN ) + r
)

+

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≤ lim inf
N→∞

E

{

αN
(

J̃(xN ) + r
)

+

N−1
∑

k=0

αkg
(

xk, µ̃k(xk), wk

)

}

.

Using Eq. (4.7) and the assumption J̃ ≥ T J̃ , we obtain

E

{

αN J̃(xN ) +

N−1
∑

k=0

αkg
(

xk, µ̃(xk), wk

)

}
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= E

{

αN J̃
(

f
(

xN−1, µ̃N−1(xN−1), wN−1

))

+

N−1
∑

k=0

αkg
(

xk, µ̃k(xk), wk

)

}

≤ E

{

αN−1J̃(xN−1) +

N−2
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

+ αN−1ǫN−1

≤ E

{

αN−2J̃(xN−2) +

N−3
∑

k=0

αkg
(

xk, µ̃k(xk), wk

)

}

+ αN−2ǫN−2

+ αN−1ǫN−1

...

≤ J̃(x0) +

N−1
∑

k=0

αkǫk.

Combining these inequalities, we obtain

J*(x0) ≤ J̃(x0) + lim
N→∞

(

αNr +
N−1
∑

k=0

αkǫk

)

.

Since {ǫk} is an arbitrary positive sequence, we may select {ǫk} so that

limN→∞

∑N−1
k=0 αkǫk is arbitrarily close to zero, and the result follows.

(b) Under Assumption N, let r be a scalar such that J̃(x) + r ≤ 0 for all
x ∈ X , and if α ≥ 1, let r = 0. We have for every initial state x0 ∈ X ,

J*(x0) = min
π

lim
N→∞

E

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≥ min
π

lim sup
N→∞

E

{

αN
(

J̃(xN ) + r
)

+

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≥ lim sup
N→∞

min
π

E

{

αN
(

J̃(xN ) + r
)

+

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

,

(4.8)
where the last inequality follows from the fact that for any sequence {hN (ξ)}
of functions of a parameter ξ we have

min
ξ

lim sup
N→∞

hN(ξ) ≥ lim sup
N→∞

min
ξ

hN (ξ).

This inequality follows by writing

hN (ξ) ≥ min
ξ

hN(ξ)

and by subsequently taking the lim sup of both sides and the minimum
over ξ of the left-hand side.
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Now we have, by using the assumption J̃ ≤ T J̃ ,

min
π

E

{

αN J̃(xN ) +

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

= min
π

E

{

αN−1 min
uN−1∈U(xN−1)

E
wN−1

{

g(xN−1, uN−1, wN−1)

+ αJ̃
(

f(xN−1, uN−1, wN−1)
)}

+

N−2
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

≥ min
π

E

{

αN−1J̃(xN−1) +

N−2
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

...

≥ J̃(x0).

Using this relation in Eq. (4.8), we obtain

J*(x0) ≥ J̃(x0) + lim
N→∞

αNr = J̃(x0).

Q.E.D.

As before, we have a version of Prop. 4.1.3 for stationary policies.

Proposition 4.1.4: Let µ be a stationary policy.

(a) Under Assumption P, if J̃ : X 7→ (−∞,∞] satisfies J̃ ≥ TµJ̃ and
either J̃ is bounded below and α < 1, or J̃ ≥ 0, then J̃ ≥ Jµ.

(b) Under Assumption N, if J̃ : X 7→ [−∞,∞) satisfies J̃ ≤ TµJ̃ and
either J̃ is bounded above and α < 1, or J̃ ≤ 0, then J̃ ≤ Jµ.

4.1.2 Optimality Conditions

Under Assumption P, we have the same optimality condition as for dis-
counted problems with bounded cost per stage.

Proposition 4.1.5: (Necessary and Sufficient Condition for
Optimality under P) Let Assumption P hold. A stationary policy
µ is optimal if and only if TJ* = TµJ*.
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Proof: If TJ* = TµJ*, Bellman’s equation (J* = TJ*) implies that J* =
TµJ*. From Prop. 4.1.4(a) we then obtain J* ≥ Jµ, showing that µ is
optimal. Conversely, if J* = Jµ, we have using Prop. 4.1.2, TJ* = J* =
Jµ = TµJµ = TµJ*. Q.E.D.

Note that when U(x) is a finite set for every x ∈ X , the above proposi-
tion implies the existence of an optimal stationary policy under Assumption
P. This may not be true under Assumption N (see Exercise 4.3). Instead,
we have a different characterization of an optimal stationary policy.

Proposition 4.1.6: (Necessary and Sufficient Condition for
Optimality under N) Let Assumption N hold. A stationary policy
µ is optimal if and only if TJµ = TµJµ.

Proof: If TJµ = TµJµ, then from Prop. 4.1.2 we have Jµ = TµJµ, so that
Jµ is a fixed point of T . Then by Prop. 4.1.3, we have Jµ ≤ J*, which
implies that µ is optimal. Conversely, if Jµ = J*, then

TµJµ = Jµ = J* = TJ* = TJµ.

Q.E.D.

The following deterministic shortest path example illustrates the lim-
itations of the preceding two propositions. It shows that under Assumption
P, we may have TJµ = TµJµ = Jµ, while µ is not optimal (which inciden-
tally shows that VI may get stuck at the cost function of a suboptimal
policy). Moreover, under Assumption N, we may have TJ* = TµJ* while
µ is not optimal (which incidentally shows that when starting PI with an
optimal policy, the next policy may be suboptimal).

Example 4.1.3

Let X = {1, t}, where t is a cost-free and absorbing state (cf. Fig. 4.1.1).
At state 1 there are two choices: u which leads to t at cost b, and u′ that
self-transitions to 1 at cost 0. We have for all J =

(

J(1), J(t)
)

,

(TJ)(1) = min
{

J(1), b+ J(t)
}

, (TJ)(t) = J(t).

Bellman’s equation takes the form

J(1) = min
{

J(1), b+ J(t)
}

, J(t) = J(t),

and the set of its solutions is shown in Fig. 4.1.1. Consider two cases:

(a) b > 0 in which case Assumption P holds. Then applying u′ at state 1 is
optimal and we have J∗(1) = J∗(t) = 0. However, for the suboptimal
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a 1 2 1 2 t b

t b c u′, Cost 0

u, Cost b

2 Cost 0

t) Case P Case N ) Case P Case N

Bellman Eq. Solutions
Bellman Eq. Solutions

Bellman Eq. Solutions
Bellman Eq. Solutions

Jµ′ = (0, 0)

0) Jµ′ = J* = (0, 0)

0) Jµ = (b, 0)

0) Jµ = J* = (b, 0)

0) J(1) 0) J(1)

(1) J(t) Case P Case N (1) J(t) Case P Case N

PI stops at µ µ PI oscilllates between µ and µ′

VI fails starting from VI fails starting from
J(1) != 0, J(t) = 0 J(1) < J∗(1), J(t) = 0

Figure 4.1.1. A deterministic two-state problem with termination node t (cf.
Example 4.1.3). At state 1 there are two choices; u which leads to t at cost b

(policy µ), and u′ that self-transitions to 1 at cost 0 (policy µ′). The figure shows
the set of solutions of Bellman’s equation for b > 0 (case P) and b < 0 (case N).

In case P, J∗ is the smallest solution within the positive orthant [cf. Prop.
4.1.3(a)]. In case N, J∗ is the largest solution within the negative orthant [cf.
Prop. 4.1.3(b)].

policy µ that applies µ(1) = u, we have Jµ(1) = b, Jµ(t) = 0, which
satisfy TJµ = TµJµ.

(b) b < 0 in which case Assumption N holds. Then applying u at state 1 is
optimal and we have J∗(1) = b, J∗(t) = 0. However, for the suboptimal
policy µ′ that applies µ′(1) = u′, we have TJ∗ = Tµ′J

∗.

4.1.3 Computational Methods

We now turn to computational methods such as VI and PI. As Example
4.1.3 suggests, even for very simple problems, these methods may have se-
rious difficulties. We will first discuss the validity of the methods under
just Assumptions P or N. In subsequent sections, we will introduce addi-



232 Noncontractive Total Cost Problems Chap. 4

tional conditions and special classes of problems for which VI and PI can
be applied more reliably.

We first consider the VI algorithm, which generates a sequence of
functions T kJ , k = 1, 2, . . . , starting from some initial function J . We will
see that, contrary to the case of the discounted problems of Chapter 2 and
the SSP problems of Chapter 3, convergence of {T kJ} to J* depends on
the initial condition J , and may require additional assumptions, beyond P
or N. We have the following proposition.

Proposition 4.1.7: (Convergence of VI)

(a) Let Assumption P hold and assume that the control constraint
set U(x) is finite for all x ∈ X . Then if J : X 7→ ℜ is any
bounded function and α < 1, or otherwise if 0 ≤ J ≤ J*, we
have

lim
k→∞

(T kJ)(x) = J*(x), x ∈ X.

(b) Let Assumption N hold. Then if J : X 7→ ℜ is any bounded
function and α < 1, or otherwise if J* ≤ J ≤ 0, we have

lim
k→∞

(T kJ)(x) = J*(x), x ∈ X.

Proof: (a) We will first assume that α = 1 and show convergence of
VI starting from the zero function, which we will denote by J0. Under
Assumption P, we have

J0 ≤ TJ0 ≤ · · · ≤ T kJ0 ≤ · · · ≤ J*,

where the inequality on the right follows from the relation J0 ≤ J*, which
in view of the monotonicity of T and Bellman’s equation (J* = TJ*),
implies that T kJ0 ≤ T kJ* = J*. Thus {T kJ} converges to some J∞ ≤ J*.

We will now show that J∞ is a fixed point of T , so from Prop. 4.1.3(a),
it will follow that J* ≤ J∞, implying that J∞ = J*. Indeed, by applying
T to the relation T kJ0 ≤ J∞ ≤ J*, we obtain

(T k+1J0)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + α(T kJ0)
(

f(x, u, w)
)

}

≤ (TJ∞)(x),

(4.9)
and by taking the limit as k → ∞, it follows that

J∞ ≤ TJ∞.

Assume to arrive at a contradiction that there exists a state x̃ ∈ X such
that

J∞(x̃) < (TJ∞)(x̃). (4.10)
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Let uk minimize in Eq. (4.9) when x = x̃. Since U(x̃) is finite, there must
exist some ũ ∈ U(x̃) such that uk = ũ for all k in some infinite subset K
of the positive integers. By Eq. (4.9) we have for all k ∈ K

(T k+1J0)(x̃) = E
w

{

g(x̃, ũ, w) + α(T kJ0)
(

f(x̃, ũ, w)
)

}

≤ (TJ∞)(x̃).

Taking the limit as k → ∞, k ∈ K, we obtain

J∞(x̃) = E
w

{

g
(

x̃, ũ, w
)

+ αJ∞
(

f(x̃, ũ, w)
)

}

≥ (TJ∞)(x̃)

= min
u∈U(x̃)

E
w

{

g(x̃, u, w) + αJ∞
(

f(x̃, u, w)
)

}

.

This contradicts Eq. (4.10), so we must have J∞ = TJ∞, and as noted
earlier, this implies that T kJ converges to J* starting from the initial
condition J = J0.

In the case where α = 1 and the initial condition J satisfies J0 ≤ J ≤
J*, we have using the monotonicity of T ,

T kJ0 ≤ T kJ ≤ J*, k = 0, 1, . . .

Since T kJ0 converges to J*, so does T kJ .
Finally, in the case where α < 1 and J is bounded, let r be a scalar

such that
J0 − re ≤ J ≤ J0 + re.

Applying T k to this relation, we obtain

T kJ0 − αkre ≤ T kJ ≤ T kJ0 + αkre.

Since T kJ0 converges to J*, as shown earlier, this relation implies that T kJ
converges also to J*.

(b) It was shown earlier [cf. Eq. (4.5)] that under Assumption N, we have

lim
k→∞

(T kJ0)(x) = J*(x), x ∈ X.

The proof from this point is identical to that for part (a). Q.E.D.

We will now strengthen part (a) of the preceding proposition, by
replacing the finiteness assumption on the control constraint set with a
weaker compactness assumption. Let us recall that a subset X of a metric
space is said to be compact if every sequence {xk} with xk ∈ X contains
a subsequence {xk}k∈K that converges to a point x ∈ X . Equivalently,
X is compact if and only if it is closed and bounded. The empty set is
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(trivially) considered compact. Given any collection of compact sets, their
intersection is a compact set (possibly empty). For a sequence of nonempty
compact sets X1, X2 . . . , Xk, . . . such that

X1 ⊃ X2 ⊃ · · · ⊃ Xk ⊃ Xk+1 ⊃ · · ·

the intersection ∩∞
k=1Xk is both nonempty and compact. In view of this

fact, it follows that if f : ℜn 7→ [−∞,∞] is a function such that the set

Fλ =
{

x ∈ ℜn | f(x) ≤ λ
}

(4.11)

is compact for every λ ∈ R, then there exists a vector x∗ minimizing f ;
i.e., there exists an x∗ ∈ ℜn such that

f(x∗) = min
x∈ℜn

f(x).

To see this, take a decreasing sequence {λk} such that λk ↓ minx∈ℜn f(x).
If minx∈ℜn f(x) < ∞, such a sequence exists and the sets

Fλk
= {x ∈ ℜn | f(x) ≤ λk}

are nonempty and compact. Furthermore, Fλk
⊃ Fλk+1

for all k, and
hence the intersection ∩∞

k=1Fλk
is also nonempty and compact. Let x∗ be

any vector in ∩∞
k=1Fλk

. Then

f(x∗) ≤ λk, k = 1, 2, . . . ,

and taking the limit as k → ∞, we obtain f(x∗) ≤ minx∈ℜn f(x), proving
that x∗ minimizes f(x). The most common case where we can guarantee
that the set Fλ of Eq. (4.11) is compact for all λ is when f is continuous
and f(x) → ∞ as ‖x‖ → ∞.

Proposition 4.1.8: (Convergence of VI Under P) Let Assump-
tion P hold and let J0 be the identically zero function. Assume that
the sets

Uk(x, λ) =

{

u ∈ U(x)
∣

∣

∣ E
w

{

g(x, u, w) + α(T kJ0)
(

f(x, u, w)
)}

≤ λ

}

(4.12)
are compact subsets of a metric space for every x ∈ X , λ ∈ ℜ, and
for all k greater than some integer k. Then the conclusion of Prop.
4.1.7(a) holds. Furthermore, there exists a stationary optimal policy.

Proof: We follow the line of proof and the notation of Prop. 4.1.7(a). We
have J∞ ≤ TJ∞. Suppose that there existed a state x̃ ∈ X such that

J∞(x̃) < (TJ∞)(x̃). (4.13)



Sec. 4.1 Positive and Negative Cost Models 235

Clearly, we must have J∞(x̃) < ∞. Consider the sets

Uk

(

x̃, J∞(x̃)
)

=
{

u ∈ U(x̃)
∣

∣

∣ E
w

{

g(x̃, u, w) + α(T kJ0)
(

f(x̃, u, w)
)}

≤ J∞(x̃)
}

for k ≥ k. Let also uk be a point attaining the minimum in

(T k+1J0)(x̃) = min
u∈U(x̃)

E
w

{

g(x̃, u, w) + α(T kJ0)
(

f(x̃, u, w)
)}

;

i.e., uk is such that

(T k+1J0)(x̃) = E
w

{

g(x̃, uk, w) + α(T kJ0)
(

f(x̃, uk, w)
)}

.

Such minimizing points uk exist by our compactness assumption. For every
k ≥ k, consider the sequence {ui}∞i=k. Since T kJ0 ≤ T k+1J0 ≤ · · · ≤ J∞,
it follows that

E
w

{

g(x̃, ui, w) + α(T kJ0)
(

f(x̃, ui, w)
)}

≤ E
w

{

g(x̃, ui, w) + α(T iJ0)
(

f(x̃, ui, w)
)}

≤ J∞(x̃), i ≥ k.

Therefore {ui}∞i=k ⊂ Uk

(

x̃, J∞(x̃)
)

, and since Uk

(

x̃, J∞(x̃)
)

is compact, all

the limit points of {ui}∞i=k belong to Uk

(

x̃, J∞(x̃)
)

and at least one such
limit point exists. Hence the same is true of the limit points of the whole
sequence {ui}∞

i=k
. It follows that if ũ is a limit point of {ui}∞

i=k
then

ũ ∈ ∩∞
k=k

Uk

(

x̃, J∞(x̃)
)

.

This implies by Eq. (4.12) that for all k ≥ k

J∞(x̃) ≥ E
w

{

g(x̃, ũ, w) + α(T kJ0)
(

f(x̃, ũ, w)
)}

≥ (T k+1J0)(x̃). (4.14)

Taking the limit as k → ∞, we obtain

J∞(x̃) = E
w

{

g(x̃, ũ, w) + αJ∞
(

f(x̃, ũ, w)
)}

.

Since the right-hand side is greater than or equal to (TJ∞)(x̃), Eq. (4.13)
is contradicted. Hence J∞ = TJ∞ and the result follows similar to the
proof of Prop. 4.1.7(a).

To show that there exists an optimal stationary policy, observe that
Eq. (4.14) and the fact J∞ = J* imply that ũ attains the minimum in

J*(x̃) = min
u∈U(x̃)

E
w

{

g(x̃, u, w) + αJ*
(

f(x̃, u, w)
)}
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for any state x̃ ∈ X with J*(x̃) < ∞. For states x̃ ∈ X such that J*(x̃) =
∞, every u ∈ U(x̃) attains the preceding minimum. Hence by Prop. 4.1.5(a)
an optimal stationary policy exists. Q.E.D.

The reader may verify by inspection of the preceding proof that if
µk(x̃), k = 0, 1, . . ., attains the minimum in the relation

(T k+1J0)(x̃) = min
u∈U(x)

E
w

{

g(x̃, u, w) + α(T kJ0)
(

f(x̃, u, w)
)}

,

and µ∗(x̃) is a limit point of {µk(x̃)} for every x̃ ∈ X , then the stationary
policy µ∗ is optimal. Furthermore, {µk(x̃)} has at least one limit point
for every x̃ ∈ X for which J*(x̃) < ∞. Thus VI under the assumptions of
either Prop. 4.1.7(a) or Prop. 4.1.8 yields in the limit not only the optimal
cost function J* but also an optimal stationary policy.

Example 4.2.3, to be given later, shows that VI may not converge
to J* starting from the identically zero function, in the absence of the
compactness hypothesis of the preceding proposition (see also Exercise 4.1).
Generally, under Assumption P, we are not guaranteed that T kJ converges
to J* starting from initial conditions J ≥ J*, even if α < 1. For the
case where α = 1, case (a) of Example 4.1.3 shows that convergence of VI
starting from J ≥ J* is not guaranteed even for finite-state/finite-control
problems. However, if we restrict the initial condition for VI within a
suitable class of functions, convergence to J* may be obtained under certain
conditions (see Sections 4.2-4.4). We note here that experience with various
types of problems, including deterministic shortest path problems, suggests
that generally if VI works at all, it works faster starting from “large” initial
conditions (those satisfying J ≥ J*) than starting from “small” initial
conditions (those satisfying J ≤ J*).

Let us also state the following condition for VI convergence from
above, first derived and proved in Yu and Bertsekas [YuB15] (Theorem
5.1) within a broader context that also addressed universal measurability
issues. A proof within a simpler framework where measurability plays no
role is given as Prop. 4.4.6 of the monograph [Ber18].

Proposition 4.1.9: (Convergence of VI from Above Under P)
Let Assumption P hold. If a function J : X 7→ [0,∞] satisfies

J* ≤ J ≤ cJ* for some c > 0, (4.15)

then we have T kJ → J*.

The condition (4.15) highlights a requirement for the reliable imple-
mentation of VI: it is important to know the sets

X0 =
{

x ∈ X | J*(x) = 0
}

, X∞ =
{

x ∈ X | J*(x) = ∞
}
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in order to obtain a suitable initial condition. For finite-state problems,
the set of x such that J*(x) = 0 can be computed in polynomial time as
will be shown in Section 4.1.4, which also provides a method for dealing
with cases where the set X∞ is nonempty.

Asynchronous Value Iteration

The concepts of asynchronous VI that we developed in Section 2.6.1 apply
also under the Assumptions P and N of this section. Under Assumption P,
if J* is real-valued, we may apply Prop. 2.6.1 with the sets S(k) defined by

S(k) = {J | T kJ0 ≤ J ≤ J*}, k = 0, 1, . . . ,

where J0 is the zero function on X . Assuming that T kJ0 → J* (cf. Props.
4.1.7-4.1.8), it follows that the asynchronous form of VI converges pointwise
to J* starting from any function in S(0). This result can also be shown for
the case where J* is not real-valued, by using a simple extension of Prop.
2.6.1, where the set of real-valued functions R(X) is replaced by the set of
all nonnegative extended real-valued functions.

Under Assumption N similar conclusions hold for the asynchronous
version of VI that starts with a function J satisfying J* ≤ J ≤ 0. Asyn-
chronous pointwise convergence to J* can be shown, based on an extension
of the asynchronous convergence theorem (Prop. 2.6.1), where R(X) is
replaced by the set of all extended real-valued functions J ≤ 0.

Policy Iteration

Let us now discuss PI. Unfortunately, PI is not a valid algorithm under
Assumption P in the absence of further conditions. This is true despite the
fact that the policy improvement property

Jµ(x) ≤ Jµ(x), ∀ x ∈ X, (4.16)

holds for any policies µ and µ such that TµJµ = TJµ. To see this, note
that

TµJµ = TJµ ≤ TµJµ = Jµ,

from which we obtain limN→∞ TN
µ Jµ ≤ Jµ. Since Jµ = limN→∞ TN

µ J0 and
J0 ≤ Jµ, we obtain Jµ ≤ Jµ.

However, the inequality Jµ ≤ Jµ by itself is not sufficient to guarantee
the validity of PI. In particular, it is not clear that strict inequality holds in
Eq. (4.16) for at least one state x ∈ X when µ is not optimal. This occurs
in the shortest path problem of Example 4.1.3 for the case b > 0, where
it can be verified that PI can stop with the suboptimal policy that moves
from node 1 to t. The difficulty here is that the equality Jµ = TJµ does not
imply that µ is optimal, and additional conditions are needed to guarantee
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the validity of PI. However, for special cases such conditions can be verified,
and various forms of PI may be reliably used for some important classes of
problems (see Sections 4.2-4.4).

Under Assumption N, the policy improvement property (4.16) may
fail. In particular, under Assumption N, we may have TµJ* = TJ* without
µ being optimal, so starting from an optimal policy, we may obtain a
nonoptimal policy by PI [cf. case (b) of Example 4.1.3]. As a result, there
may be an oscillation between nonoptimal policies even when the state and
control spaces are finite.

On the other hand, under Assumption N, optimistic PI (cf. Section
2.3.3) has much better convergence properties, because it embodies the
mechanism of VI, which is convergent to J* as we saw in Prop. 4.1.7(b).
Indeed, let us consider an optimistic PI algorithm that generates a sequence
{Jk, µk} according to †

TµkJk = TJk, Jk+1 = T
mk

µk Jk, (4.17)

where mk is a positive integer. We assume that the algorithm starts with
a function J0 that satisfies 0 ≥ J0 ≥ TJ0 and J0 ≥ J*. For example, we
may choose J0 to be the identically zero function. We have the following
proposition.

Proposition 4.1.10: Let Assumption N hold and let {Jk, µk} be a
sequence generated by the optimistic PI algorithm (4.17), assuming
that 0 ≥ J0 ≥ J* and J0 ≥ TJ0. Then Jk ↓ J∗.

Proof: We have

J0 ≥ Tµ0J0 ≥ Tm0
µ0 J0 = J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

where the first, second, and third inequalities hold because the assumption
J0 ≥ TJ0 = Tµ0J0 implies that T ℓ

µ0J0 ≥ T ℓ+1
µ0 J0 for all ℓ ≥ 0. Continuing

similarly we obtain

Jk ≥ TJk ≥ Jk+1, ∀ k ≥ 0. (4.18)

Moreover, we can show by induction that Jk ≥ J*. Indeed this is true for
k = 0 by assumption. If Jk ≥ J*, we have

Jk+1 = T
mk

µk Jk ≥ TmkJk ≥ TmkJ* = J*, (4.19)

† As with all PI algorithms in this book, we assume that the policy im-

provement operation is well-defined, in the sense that there exists µk such that

TµkJk = TJk for all k.
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where the last equality follows from Bellman’s equation, TJ* = J*, thus
completing the induction. Thus, by combining the preceding two relations,

Jk ≥ TJk ≥ Jk+1 ≥ J*, ∀ k ≥ 0. (4.20)

We will now show by induction that

T kJ0 ≥ Jk ≥ J*, ∀ k ≥ 0. (4.21)

Indeed this relation holds by assumption for k = 0, and assuming that it
holds for some k ≥ 0, we have by applying T to it and by using Eq. (4.20),

T k+1J0 ≥ TJk ≥ Jk+1 ≥ J*,

thus completing the induction. Since T kJ0 → J* [cf. Prop. 4.1.7(b)], from
Eq. (4.21), we obtain Jk ↓ J∗. Q.E.D.

Note that in the preceding proposition, we have Jk → J*, even if
J*(x) = −∞ for some x; for an example, see the blackmailer’s problem of
Example 3.6.2. The reason why optimistic PI can deal with the absence of
an optimal policy is that it acts as a form of VI, which is convergent to J*

under Assumption N [cf. Prop. 4.1.7(b)]. However, optimistic PI tends to
be more computationally efficient than VI, as experience has shown, so it
is usually preferable in practice.

Linear Programming

Finally, let us note that it is possible to devise a computational method
based on mathematical programming when X and U are finite sets by mak-
ing use of Prop. 4.1.3. Under Assumption N and α = 1, J*(1), . . . , J*(n)
solve the following linear programming problem (in z1, . . . , zn):

maximize
n
∑

i=1

zi

subject to zi ≤
n
∑

j=1

pij(u)
(

g(i, u, j) + zj
)

, zi ≤ 0, i = 1, . . . , n, u ∈ U(i).

When α = 1 and Assumption P holds, the corresponding optimization
problem takes the form

minimize
n
∑

i=1

zi

subject to zi ≥ min
u∈U(i)





n
∑

j=1

pij(u)
(

g(i, u, j) + zj
)



 , zi ≥ 0, i = 1, . . . , n,

but unfortunately this problem is not linear or even convex.
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4.1.4 Finite-State Positive Cost Models: Equivalence to a
Stochastic Shortest Path Problem

We will now consider problems with finite state space X and control space
U under Assumption P. We will show that such problems have a special
property that greatly facilitates their solution: they can be transformed to
equivalent SSP problems for which the powerful analysis and computational
methodology of Chapter 3 can be applied .† In particular, we will define an
SSP problem, which will be shown to be “equivalent” to the given problem.
In this new SSP problem, all the states x in the set

X0 =
{

x ∈ X | J*(x) = 0
}

,

including the termination state t (if one exists), are merged into a new
termination state t. We assume that the set X0 is nonempty, and this does
not involve any loss of generality, since if needed we may include in X an
artificial cost-free and absorbing termination state that is not reachable
from any of the other states with a feasible transition. To facilitate the
exposition, we will also assume without essential loss of generality that
X0 6= X , or equivalently that the set X+ given by

X+ =
{

x ∈ X | J*(x) > 0
}

,

is nonempty. Moreover, to simplify notation we assume that the cost per
stage g does not depend on the disturbance w.

Note that from the Bellman equation J* = TJ*, and the finiteness of
U(x), we obtain the following useful characterization of X0:

x ∈ X0 if and only if there exists u ∈ U(x) such that

g(x, u) = 0 and pxy(u) = 0 for all y /∈ X0.
(4.22)

In words, there exists a policy under which X0 is an “absorbing” set of
states where the one-stage cost is equal to 0. Algorithms for constructing
X0 will be given shortly. We introduce a new SSP problem, where the
states in X0 are lumped into a termination state t.

Definition of Equivalent SSP Problem:

State space: X = X+ ∪ {t}, where t is cost-free and absorbing.

† Actually, the finiteness of the control space is not essential, and it is made

here for simplicity. It can be replaced by the compactness assumption that was

briefly discussed in Section 3.2 for SSP; see [BeY16].
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Control constraints and one-stage costs : U and g, where for x ∈ X+,
we have U(x) = U(x) and g(x, u) = g(x, u), for all u ∈ U(x).

Transition probabilities : pxy(u), where for x ∈ X+ and u ∈ U(x), we
have

pxy(u) =

{

pxy(u) if y ∈ X+,
∑

z∈X0
pxz(u) if y = t.

The optimal cost vector for the equivalent SSP problem is denoted by
J̄ , and is the smallest nonnegative solution of the corresponding Bellman
equation J = TJ , where

(TJ)(x)
def
= min

u∈U(x)



g(x, u) +
∑

y∈X+

pxy(u)J(y)





= min
u∈U(x)



g(x, u) +
∑

y∈X+

pxy(u)J(y)



 , x ∈ X+,

(4.23)

since Assumption P is satisfied [cf. Prop. 4.1.3(a)].
We will now clarify the relation of the equivalent SSP problem with

the given problem (also referred to as the “original” problem). The key
fact for our purposes, given in the following proposition, is that J̄ coincides
with J* on the set X+. Moreover if J* is real-valued, then the equivalent
SSP problem satisfies Assumptions 3.1.1 and 3.1.2 of Section 3.1 (we will
refer to these as the “standard SSP conditions” in what follows). As a
result we may transfer the available analytical results from the equivalent
SSP problem to the original problem. We may also apply the VI and PI
methods discussed in Sections 3.4 and 3.5 to the equivalent SSP problem,
after first obtaining the set X0, in order to compute the solution of the
original problem.

Proposition 4.1.11: Assume that X and U are finite sets, and that
g(x, u) ≥ 0 for all x ∈ X and u ∈ U(x). Then:

(a) J*(x) = J̄(x) for all x ∈ X+.

(b) A policy µ∗ is optimal for the original problem if and only if

µ∗(x) = µ(x), ∀ x ∈ X+,

g
(

x, µ∗(x)
)

= 0, pxy
(

µ∗(x)
)

= 0, ∀ x ∈ X0, y ∈ X+, (4.24)

where µ is an optimal policy for the equivalent SSP problem.
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(c) If J* is real-valued, then in the equivalent SSP problem every
improper policy has infinite cost starting from some initial state.
Moreover, there exists at least one proper policy, so the equiva-
lent SSP problem satisfies the standard SSP conditions.

Proof: (a) Let us extend J̄ to a function Ĵ that has domain X :

Ĵ(x) =

{

J̄(x) if x ∈ X+,
0 if x ∈ X0.

Then from the Bellman equation J̄ = T J̄ , and the definition (4.23) of T ,
we have Ĵ(x) = (T Ĵ)(x) for all x ∈ X+, while from Eq. (4.22), we have
(T Ĵ)(x) = 0 = Ĵ(x) for all x ∈ X0. Thus Ĵ is a fixed point of T , so
that Ĵ ≥ J* [since J* is the smallest nonnegative fixed point of T , cf.
Prop. 4.1.3(a)], and hence J̄(x) ≥ J*(x) for all x ∈ X+. Conversely, the
restriction of J* to X+ is a solution of the Bellman equation J = TJ , with
T given by Eq. (4.23), so we have J̄(x) ≤ J*(x) for all x ∈ X+ [since J̄ is
the smallest nonnegative fixed point of T , cf. Prop. 4.1.3(a)].

(b) A policy µ∗ is optimal for the original problem if and only if J* =
TJ* = Tµ∗J* (cf. Prop. 4.1.5), or

J*(x) = min
u∈U(x)



g(x, u) +
∑

y∈X

pxy(u)J∗(y)





= g
(

x, µ∗(x)
)

+
∑

y∈X

pxy
(

µ∗(x)
)

J∗(y), ∀ x ∈ X.

Equivalently, µ∗ is optimal if and only if

J*(x) = min
u∈U(x)



g(x, u) +
∑

y∈X+

pxy(u)J∗(y)





= g
(

x, µ∗(x)
)

+
∑

y∈X+

pxy
(

µ∗(x)
)

J∗(y), ∀ x ∈ X+,

(4.25)

and Eq. (4.24) holds. Using part (a), the Bellman equation J̄ = T J̄ , and the
definition (4.23) of T , we see that Eq. (4.25) is the necessary and sufficient
condition for optimality of the restriction of µ∗ to X+ in the equivalent
SSP problem, and the result follows.

(c) Let µ be an improper policy of the equivalent SSP problem. Then
the Markov chain induced by µ contains a recurrent class R, which must
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consist of states x with J*(x) > 0 [since we have J*(x) > 0, for all x ∈ X+].
Hence, for some state x ∈ R, we must have g

(

x, µ(x)
)

> 0 [otherwise,

g
(

x, µ(x)
)

= 0 for all x ∈ R, implying that Jµ(x) = 0 and hence J*(x) = 0
for all x ∈ R]. Since the state returns to x infinitely often (with probability
1) starting from x, it follows that the cost of x in the equivalent SSP
problem is ∞ starting from x.

Let µ∗ be an optimal policy for the original problem and let µ be
the corresponding optimal policy for the equivalent SSP problem as per
part (b). Since J* is real-valued, the cost of µ must be real-valued in the
equivalent SSP problem [cf. part (a)]. This proves that µ is proper, since
we have shown already that improper policies have infinite cost from some
initial state in the equivalent SSP problem. Q.E.D.

We will now use the equivalent SSP problem to provide analytical
and computational results for the original problem.

Proposition 4.1.12: Assume that X and U are finite sets, that
g(x, u) ≥ 0 for all x ∈ X and u ∈ U(x), and that J* is real-valued.
Consider the set of functions

J =
{

J ≥ 0 | J(x) = 0, ∀ x ∈ X0

}

.

Then:

(a) J* is the unique fixed point of T within J .

(b) We have T kJ → J* for any J ∈ J .

Proof: (a) Since the standard SSP conditions hold for the equivalent SSP
problem by Prop. 4.1.11(c), J̄ is the unique fixed point of T . From Prop.
4.1.11(a) and the definition of the equivalent SSP problem, it follows that
J* is the unique fixed point of T within the set J .

(b) Similar to the proof of part (a), the VI algorithm for the equivalent SSP
problem is convergent to J̄ starting from any nonnegative initial condition,
which implies the result. Q.E.D.

To make use of Prop. 4.1.12 we should know the sets X0 and X+,
and also be able to deal with the case where J* is not real-valued. We will
provide an algorithm to determine X0 first, and then we will consider the
case where J* can take infinite values.

Algorithm for Constructing X0 and X+

In practice, the sets X0 and X+ can often be determined by an analysis
that relies on the special structure of the given problem. When this is not
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so, we may compute these sets with a simple algorithm that requires at
most n iterations, where n is the number of states in X . Let

Û(x) =
{

u ∈ U(x) | g(x, u) = 0
}

, x ∈ X.

Denote X1 =
{

x ∈ X | Û(x) is nonempty
}

, and define for k ≥ 1,

Xk+1 =
{

x ∈ Xk | there exists u ∈ Û(x) such that y ∈ Xk

for all y with pxy(u) > 0
}

.

It can be seen with a straightforward induction that

Xk =
{

x ∈ X | (T kJ0)(x) = 0
}

,

where J0 is the zero vector. Clearly we have Xk+1 ⊂ Xk for all k, and since
X is finite, the algorithm terminates at some iteration k̄ with Xk̄+1 = Xk̄.
Moreover the set Xk̄ is equal to X0, since we have T kJ0 ↑ J* because
of the finiteness of the control space. If m is the number of state-control
pairs, each iteration requires O(m) computation, so the complexity of the
algorithm for finding X0 and X+ is O(mn).

The Case Where J* is not Real-Valued

In order to use effectively the equivalent SSP problem, J* must be real-
valued, so that Prop. 4.1.12 can apply. It turns out that this restriction
can be circumvented by introducing an artificial high-cost stopping action
at each state, thereby making J* real-valued.

In particular, let us assume that the original problem is already in
SSP format, so it includes a termination state t [if this is not so, we simply
add a t with pxt(u) = 0 for all u]. Let us introduce for each scalar c > 0,
an SSP problem that is identical to the original, except that an additional
control is added to each U(x), under which the transition to t occurs with
probability 1 and a cost c is incurred. We refer to this problem as the
c-SSP problem, and we denote its optimal cost vector by Ĵc. Note that

Ĵc(x) ≤ c, Ĵc(x) ≤ J*(x), ∀ x ∈ X, c > 0,

and that Ĵc is the unique fixed point of the corresponding mapping T̂c given
by

(T̂cJ)(x) = min



c, min
u∈U(x)



g(x, u) +
∑

y∈X

pxy(u)J(y)







 , x ∈ X,

(4.26)
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within the set J =
{

J ≥ 0 | J(x) = 0, ∀ x ∈ X0

}

; cf. Prop. 4.1.12(a). Let

Xf =
{

x ∈ X | J*(x) < ∞
}

, X∞ =
{

x ∈ X | J*(x) = ∞
}

.

We have the following proposition.

Proposition 4.1.13: Assume that X and U are finite sets, and that
g(x, u) ≥ 0 for all x ∈ X and u ∈ U(x). Then there exists c > 0 such
that for all c ≥ c, we have

Ĵc(x) = J*(x), ∀ x ∈ Xf ,

and if µ̂ is an optimal policy for the c-SSP problem, then any policy µ∗

such that µ∗(x) = µ̂(x) for x ∈ Xf is optimal for the original problem.

Proof: The result is true if X∞ is empty (i.e, J* is real-valued), since then
for c ≥ maxx∈X J*(x), the VI algorithm starting from the zero vector J0
produces identical results for the c-SSP and original SSP problems, so for
such c, Ĵc = J*. For the case where X∞ is nonempty, we will formulate
“reduced” versions of these two problems, where the states in Xf do not
communicate with the states in X∞, so that by restricting the reduced
problems to Xf , we revert to the case where J* is real-valued.

Indeed, for both the c-SSP problem and the original problem, let us
replace the constraint set U(x) by the set

Û(x) =

{

U(x) if x ∈ X∞,
{

u ∈ U(x) | pxy(u) = 0, ∀ y ∈ X∞

}

if x ∈ Xf ,

so that the infinite cost states in X∞ are unreachable from the finite cost
states in Xf . We refer to the problems thus created as the reduced c-SSP
problem and the reduced original problem.

We now apply Prop. 4.1.5 to both the original and the reduced original
problems. In the original problem, for each x ∈ Xf , the minimum in the
expression

min
u∈U(x)



g(x, u) +
∑

y∈X

pxy(u)J*(y)



 ,

is attained for some u ∈ Û(x) [controls u /∈ Û(x) are inferior because
they lead with positive probability to states y ∈ X∞]. Thus an optimal
policy for the original problem is feasible for the reduced original problem,
and hence also optimal since the optimal cost cannot become smaller at
any state when passing from the original to the reduced original problem.
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Similarly, for each x ∈ Xf , the minimum in the expression

min



c, min
u∈U(x)



g(x, u) +
∑

y∈X

pxy(u)Jc(y)







 ,

[cf. Eq. (4.26)] is attained for some u ∈ Û(x) once c becomes sufficiently
large. The reason is that for y ∈ X∞, we have limc→∞ Ĵc(y) = J*(y) = ∞,
so for sufficiently large c, each control u /∈ Û(x) becomes inferior to the
controls u ∈ Û(x), for which pxy(u) = 0. Thus by taking c large enough, an
optimal policy for the original c-SSP problem, becomes feasible and hence
optimal for the reduced c-SSP problem [here the size of the “large enough”
c depends on x and u, so finiteness of X and U(x) is important for this
argument]. We have thus shown that the optimal cost vector of the reduced
original SSP problem is also J*, and the optimal cost vector of the reduced
c-SSP problem is also Ĵc for sufficiently large c.

Clearly, starting from any state in Xf it is impossible to transition
to a state x ∈ X∞ in the reduced original problem and the reduced c-SSP
problem. Thus if we restrict these problems to the set of states in Xf , we
will not affect their optimal costs for these states. Since J* is real-valued
in Xf , it follows that for sufficiently large c, these optimal cost vectors

are equal, i.e., Ĵc(x) = J*(x) for all x ∈ Xf . Moreover, if µ̂ is an optimal
policy for the c-SSP problem, then any policy µ∗ such that µ∗(x) = µ̂(x) for
x ∈ Xf is optimal for the original problem, since for x ∈ X∞, any choice
of µ(x) is immaterial and leads to infinite cost in the original problem.
Q.E.D.

We note that the finiteness of U is needed for Prop. 4.1.13 to hold,
and that a compactness condition is not sufficient. We demonstrate this
with examples.

Example 4.1.4 (Counterexamples)

Consider the SSP problem of Fig. 4.1.2, which involves transition probabilities
and costs that depend continuously on u, and the following two cases:

(a) Let U(2) = (0, 1], which is infinite but not compact. Then we have
J∗(1) = J∗(2) = ∞. Let us now calculate Ĵc(1) and Ĵc(2) from the
Bellman equation

Ĵc(1) = min
[

c, 1 + Ĵc(1)
]

,

Ĵc(2) = min

[

c, min
u∈(0,1]

[

1−
√
u+ uĴc(1)

]

]

.

The first equation yields Ĵc(1) = c, and for c ≥ 1 we have c ≥ 1−√
u+uc

for all u ∈ (0, 1], so the minimization in the second equation takes the
form

min
u∈(0,1]

[

1−
√
u+ uc

]

.
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11 t

Destination

2

Prob. u Prob. 1− u

Cost 1 Cost 1−
√

u

Prob. 1

Figure 4.1.2. The SSP problem of Example 4.1.4. There are states 1 and 2,
in addition to the termination state t. At state 2, upon selecting control u,
we incur cost 1 −

√
u, and move to state 1 with probability u and to t with

probability 1−u. At state 1 we incur cost 1 and stay at 1 with probability 1.

By setting to 0 the derivative with respect to u, we see that the mini-
mum is attained at u = 1/(2c)2, yielding

Ĵc(2) = 1− 1

4c
, for c ≥ 1.

Thus we have limc→∞ Ĵc(2) = 1, while J∗(2) = ∞. This shows that
without compactness of the control constraint sets we cannot have
limc→∞ Ĵc = J∗.

(b) U(2) = [0, 1], which is infinite and compact. Then we have J∗(1) = ∞,
J∗(2) = 1. Similar to case (a), we calculate Ĵc(1) and Ĵc(2) from the
Bellman equation. An essentially identical calculation to the one of case
(a) yields the same results for c ≥ 1:

Ĵc(1) = c, Ĵc(2) = 1− 1

4c
.

Thus we have limc→∞ Ĵc(1) = J∗(1) = ∞, and limc→∞ Ĵc(2) = J∗(2) =
1. However, Ĵc(2) < J∗(2) for all c. This shows that finiteness of the
control space is essential in order to have Ĵc = J∗ for sufficiently large
c. On the other hand, the property limc→∞ Ĵc = J∗ can be shown in
generality in finite-state problems under Assumption P when U(x) is
compact, and pxy(·) and g(x, ·) are continuous over U(x); see [BeY16].

Proposition 4.1.13 suggests a procedure to solve a problem for which
J* is not real-valued, but the one-stage cost is nonnegative and the control
space is finite:

(1) Compute the sets X0 and X+ using the algorithm of this section.

(2) Introduce for all x ∈ X+ a stopping action with a cost c > 0.

(3) Solve the equivalent SSP problem and obtain a candidate optimal
policy for the original problem using Prop. 4.1.11(b). This step can
be done with the PI and VI algorithms of Chapter 3.
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(4) Check that c is high enough, by testing to see if the candidate optimal
policy changes as c is increased, or satisfies the optimality condition
of Prop. 4.1.5. If it does, the current policy is optimal; if it does not,
increase c by some fixed factor and repeat from Step (3).

By Prop. 4.1.13, this procedure terminates with an optimal policy in a
finite number of steps.

4.2 CONTINUOUS-STATE DETERMINISTIC POSITIVE COST
MODELS

In this section, we consider a positive cost problem, where the objective
is to steer a deterministic system towards a cost-free and absorbing set of
states. The system equation is

xk+1 = f(xk, uk), k = 0, 1, . . . , (4.27)

where xk and uk are the state and control at stage k, lying in sets X and
U , respectively, and f is a function mapping X × U to X . The control uk

must be chosen from a constraint set U(xk). The cost per stage, denoted
g(x, u), is assumed nonnegative:

0 ≤ g(x, u), x ∈ X, u ∈ U(x). (4.28)

No restrictions are placed on the nature of X and U : for example, they
may be finite sets as in deterministic shortest path problems, or they may
be continuous spaces as in classical problems of control to the origin or
some other terminal set.

Because the system is deterministic, given an initial state x0, a policy
π = {µ0, µ1, . . .} when applied to the system (4.27), generates a unique se-
quence of state control pairs

(

xk, µk(xk)
)

, k = 0, 1, . . . . The corresponding
cost function is

Jπ(x0) = lim
N→∞

N−1
∑

k=0

g
(

xk, µk(xk)
)

, x0 ∈ X. (4.29)

We assume that there is a nonempty stopping set X0 ⊂ X , which
consists of cost-free and absorbing states in the sense that

g(x, u) = 0, x = f(x, u), ∀ x ∈ X0, u ∈ U(x). (4.30)

Clearly, J*(x) = 0 for all x ∈ X0, so the set X0 may be viewed as a
desirable set of termination states that we are trying to reach or approach
with minimum total cost.

A major class of practical problems of this type are regulation prob-
lems in control applications, where the objective is to bring and maintain
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the state within a small region around a desired point. A popular formu-
lation involves a deterministic linear system and a quadratic cost, such as
the one discussed in Section 3.1 of Vol. I. Variations of this problem may
involve a nonquadratic cost function, and state and control constraints. We
will pause to discuss this type of problem in this section, and we will also
discuss it in Section 4.3, in the context of adaptive control , where some of
the system parameters are unknown.

Another major class of relevant practical problems is control of a
dynamic system where the objective is to reach a goal state. Problems
of this type are often called planning problems, and arise frequently in
robotics, and in production scheduling and inventory control, among others.

Typically, the regulation and planing problems just described involve
uncertainty, but they are often formulated as deterministic problems, and
in practice they are combined with on-line replanning, to correct for dis-
turbances and changes in the problem data.

The problem of this section is covered by the positive cost theory of
Section 4.1 [cf. Eq. (4.28)]. Thus, from Props. 4.1.1 and 4.1.5, the optimal
cost function J* satisfies Bellman’s equation:

J*(x) = min
u∈U(x)

{

g(x, u) + J*
(

f(x, u)
)}

, ∀ x ∈ X,

and an optimal stationary policy may be obtained through the minimiza-
tion in the right side of this equation. In this section we will focus on
deriving conditions under which J* is the unique solution of this equation
within a certain restricted class of functions , whose value within the set
X0 is fixed at zero. We will also discuss how to compute J* with the VI
and PI algorithms.

The VI algorithm starts from some nonnegative function J : X 7→
[0,∞], and generates a sequence of functions {Jk} according to

Jk+1 = min
u∈U(x)

{

g(x, u) + Jk
(

f(x, u)
)}

.

This sequence is also written as Jk = T kJ , where consistent with the
notation of the preceding section, T is the mapping given by

(TJ)(x) = min
u∈U(x)

{

g(x, u) + J
(

f(x, u)
)}

, x ∈ X.

We will derive conditions under which Jk converges to J* pointwise.
The PI algorithm starts from a stationary policy µ0, and generates a

sequence of stationary policies {µk} via a sequence of policy evaluations to
obtain Jµk from the equation

Jµk (x) = g
(

x, µk(x)
)

+ Jµk

(

f
(

x, µk(x)
))

, x ∈ X, (4.31)
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interleaved with policy improvements to obtain µk+1 from Jµk according
to

µk+1(x) = arg min
u∈U(x)

{

g(x, u) + Jµk

(

f(x, u)
)}

, x ∈ X. (4.32)

Note that Jµk satisfies Eq. (4.31) by Prop. 4.1.2. Also for the PI algorithm
to be well-defined, the minimum in Eq. (4.32) should be attained for each
x ∈ X , which is true under some conditions that guarantee compactness of
the level sets

{

u ∈ U(x) | g(x, u) + Jµk

(

f(x, u)
)

≤ λ
}

, λ ∈ ℜ;

cf. Prop. 4.1.8. We will derive conditions under which Jµk converges to J*.
In our analysis, we will assume that J*(x) > 0 for x /∈ X0, so that

X0 =
{

x ∈ X | J*(x) = 0
}

. (4.33)

In the applications of primary interest, g is usually taken to be strictly
positive outside of X0 to encourage asymptotic convergence of the gener-
ated state sequence to X0, so this assumption is natural and often easily
verifiable. Besides X0, another interesting subset of X is

Xf =
{

x ∈ X | J*(x) < ∞
}

.

Ordinarily, in practical applications, the states in Xf are those from which
one can reach the stopping set X0, at least asymptotically.

For an initial state x, we say that a policy π terminates starting
from x if the state sequence {xk} generated starting from x and using π
reaches X0 in finite time, i.e., satisfies xk̄ ∈ X0 for some index k̄. A key
assumption in this section is that the optimal cost J*(x) (if it is finite) can
be approximated arbitrarily closely by using policies that terminate from
x. In particular, we assume the following throughput this section.

Assumption 4.2.1: (Asymptotic Termination) The cost per stage
is nonnegative [cf. Eq. (4.28)], and for all states x outside the stopping
set X0 we have J∗(x) > 0 [cf. Eq. (4.33)]. Moreover, for every pair
(x, ǫ) with x ∈ Xf and ǫ > 0, there exists a policy π that terminates
starting from x and satisfies Jπ(x) ≤ J*(x) + ǫ.

Specific and easily verifiable conditions that imply this assumption
will be given later. A prominent case is when X and U are finite, so the
problem becomes a deterministic shortest path problem with nonnegative
arc lengths. If all cycles of the state transition graph have positive length,
all policies π that do not terminate from a state x ∈ Xf must satisfy
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Jπ(x) = ∞, implying that there exists an optimal policy that terminates
from all x ∈ Xf . Thus, in this case Assumption 4.2.1 is naturally satisfied.

When X is the n-dimensional Euclidean space ℜn, a primary case of
interest, it may easily happen that the optimal policies are not terminating
from some x ∈ Xf , but instead the optimal state trajectories may approach
X0 asymptotically. This is true for example in the classical linear-quadratic
optimal control problem, where X = ℜn, X0 = {0}, U = ℜm, the system
is linear of the form xk+1 = Axk+Buk, where A and B are given matrices,
and the cost is positive semidefinite quadratic. There the optimal policy is
linear of the form µ∗(x) = Lx, where L is some matrix obtained through
the steady-state solution of the Riccati equation (see Section 3.1 of Vol. I,
and also Section 4.3 in this chapter). Since the optimal closed-loop system
is stable and has the form xk+1 = (A+BL)xk, the state will typically never
reach the termination set X0 = {0} in finite time, although it will approach
it asymptotically. However, we will show later that the Assumption 4.2.1
is satisfied under some natural and easily verifiable conditions.

We denote by E+(X) the set of all functions J : X 7→ [0,∞], and by
J the set of functions

J =
{

J ∈ E+(X) | J(x) = 0, ∀ x ∈ X0

}

. (4.34)

Since X0 consists of cost-free and absorbing states [cf. Eq. (4.30)], the set
J contains the cost function Jπ of all policies π, as well as J*. In our
terminology, all equations, inequalities, and convergence limits involving
functions are meant to be pointwise. Let us also denote for all x ∈ X ,

ΠR,x =
{

π ∈ Π | π terminates from x
}

, (4.35)

and note the following key implication of the asymptotic termination As-
sumption 4.2.1:

J*(x) = min
π∈ΠR,x

Jπ(x), ∀ x ∈ Xf . (4.36)

In the subsequent proof arguments, the significance of policies that termi-
nate starting from some initial state x0 is that the corresponding generated
sequences {xk} satisfy J(xk) = 0 for all J ∈ J and k sufficiently large.

Our main results are given in the following three propositions.

Proposition 4.2.1: (Uniqueness of Solution of Bellman’s Equa-
tion) Let Assumption 4.2.1 hold. The optimal cost function J* is the
unique solution of Bellman’s equation within the set of functions J .

Proof: Let Ĵ ∈ J be a solution of Bellman’s equation, so that

Ĵ(x) ≤ g(x, u) + Ĵ
(

f(x, u)
)

, ∀ x ∈ X, u ∈ U(x), (4.37)
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while by Prop. 4.1.3(a), J* ≤ Ĵ . For any x0 ∈ Xf and policy π =
{µ0, µ1, . . .} ∈ ΠR,x0 , we have by using repeatedly Eq. (4.37),

J*(x0) ≤ Ĵ(x0) ≤ Ĵ(xk) +

k−1
∑

t=0

g
(

xt, µt(xt)
)

, k = 1, 2, . . . ,

where {xk} is the state sequence generated starting from x0 and using π.
Also, since π ∈ ΠR,x0 and hence xk ∈ X0 and Ĵ(xk) = 0 for all sufficiently
large k, we have

lim sup
k→∞

{

Ĵ(xk) +
k−1
∑

t=0

g
(

xt, µt(xt)
)

}

= lim
k→∞

{

k−1
∑

t=0

g
(

xt, µt(xt)
)

}

= Jπ(x0).

By combining the last two relations, we obtain

J*(x0) ≤ Ĵ(x0) ≤ Jπ(x0), ∀ x0 ∈ Xf , π ∈ ΠR,x0 .

Taking the minimum over π ∈ ΠR,x0 and using Eq. (4.36), it follows that

J*(x0) = Ĵ(x0) for all x0 ∈ Xf . Also for x0 /∈ Xf , we have J*(x0) =

Ĵ(x0) = ∞ [since J* ≤ Ĵ by Prop. 4.1.3(a)], so we obtain J* = Ĵ . Q.E.D.

We give two examples where the asymptotic termination Assumption
4.2.1 is violated because there are states x /∈ X0 such that J*(x) = 0, so
the condition (4.33) does not hold. In both examples, in addition to J*,
there are other solutions of Bellman’s equation within J .

Example 4.2.1 (Shortest Path Example)

Consider the positive cost case of the deterministic Example 4.1.3. Here
X = {1, t}, where t is a cost-free and absorbing state. We let X0 = {t}, so
that

J =
{

J | J(1) ≥ 0, J(t) = 0
}

;

cf. Eq. (4.34). At state 1 there are two choices: u which leads to t at cost
b > 0, and u′ that self-transitions to 1 at cost 0. We have J∗(1) = J∗(t) = 0,
so

X0 6=
{

x ∈ X | J∗(x) = 0
}

= X,

and the condition (4.33) is violated. Here Bellman’s equation takes the form

J(1) = min
{

J(1), b+ J(t)
}

, J(t) = J(t),

and it can be seen that its set of solutions within J is the infinite set

{

J | 0 ≤ J(1) ≤ b, J(t) = 0
}

;

cf. Fig. 4.1.1.
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Example 4.2.2 (Linear-Quadratic Example)

Consider the scalar system xk+1 = γxk + uk with X = U(x) = ℜ, and the
quadratic cost g(x,u) = u2. We take X0 = {0}, so that

J =
{

J ≥ 0 | J(0) = 0
}

.

We have J∗(x) ≡ 0, so

X0 6=
{

x ∈ X | J∗(x) = 0
}

= X,

and condition (4.33) is violated. Bellman’s equation has the form

J(x) = min
u∈ℜ

{

u2 + J(γx+ u)
}

, x ∈ ℜ,

and it is seen that J∗ is a solution. Let us assume that γ > 1 so the system
is unstable (the instability of the system is important for the purpose of this
example). Then it can be verified that the quadratic function

J(x) = (γ2 − 1)x2,

which belongs to J , also solves Bellman’s equation. This is the cost function
of the suboptimal policy

µ(x) =
(1− γ2)x

γ
,

which yields the stable closed-loop system

xk+1 =
1

γ
xk.

This policy can be verified to be optimal among policies that are linear and
yield a stable closed-loop system (see Section 3.1 of Vol. I), but it is not
optimal among all policies [the optimal policy applies µ∗(x) = 0 for all x].

In this case the algebraic Riccati equation associated with the problem
has two nonnegative solutions because there is no cost on the state. This
is a consequence of the violation of the standard observability condition for
uniqueness of solution of the Riccati equation (cf. Section 3.1, Vol. I). If the
cost per stage were

g(x, u) = qx2 + u2,

with q > 0, instead of g(x, u) = u2, Assumption 4.2.1 would be satisfied, and
by Prop. 4.2.1, Bellman’s equation would have a unique solution within J .
Consistently with this fact, the Riccati equation would have a unique positive
solution (although it would also have a negative solution, cf. Section 3.1, Vol.
I).
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Proposition 4.2.2: (Convergence of VI) Let Assumption 4.2.1
hold.

(a) The sequence {T kJ} generated by VI starting from a function
J ∈ J with J ≥ J* converges to J*.

(b) Assume further that the compactness condition of Prop. 4.1.8
holds, i.e., that the sets Uk(x, λ) given by

Uk(x, λ) =
{

u ∈ U(x) | g(x, u) + (T kJ0)
(

f(x, u)
)

≤ λ
}

,

are compact subsets of a metric space for all x ∈ X , λ ∈ ℜ, and
for all k greater than some integer k, where J0 is the identically
zero function. Then the sequence {T kJ} generated by VI starting
from any function J ∈ J converges to J*.

Proof: (a) Let J be a function in J with J ≥ J*, and let us apply
the VI operation to both sides of the inequality J ≥ J*. Since J* is a
solution of Bellman’s equation and VI has a monotonicity property that
maintains the direction of functional inequalities, we see that TJ ≥ J*.
Continuing similarly, we obtain T kJ ≥ J* for all k. Moreover, we clearly
have (T kJ)(x) = 0 for all x ∈ X0, so T kJ ∈ J for all k. We now argue that
since T kJ is produced by k steps of VI starting from J , it is the optimal cost
function of the k-stage version of the problem with terminal cost function
J . Therefore, we have for every x0 ∈ X and policy π = {µ0, µ1, . . .},

J*(x0) ≤ (T kJ)(x0) ≤ J(xk) +
k−1
∑

t=0

g
(

xt, µt(xt)
)

, k = 1, 2, . . . ,

where {xt} is the state sequence generated starting from x0 and using π.
If x0 ∈ Xf and π is a policy in the set ΠR,x0 defined by Eq. (4.35), we have
xk ∈ X0 and J(xk) = 0 for all sufficiently large k, so that

lim sup
k→∞

{

J0(xk) +

k−1
∑

t=0

g
(

xt, µt(xt)
)

}

= lim
k→∞

{

k−1
∑

t=0

g
(

xt, µt(xt)
)

}

= Jπ(x0).

By combining the last two relations, we obtain

J*(x0) ≤ lim inf
k→∞

(T kJ)(x0) ≤ lim sup
k→∞

(T kJ)(x0) ≤ Jπ(x0),

for all x0 ∈ Xf and π ∈ ΠR,x0 . Taking the minimum over π ∈ ΠR,x0 and
using Eq.(4.36), it follows that limk→∞(T kJ)(x0) = J*(x0) for all x0 ∈ Xf .
Since for x0 /∈ Xf , we have J*(x0) = (T kJ)(x0) = ∞, we obtain T kJ → J*.
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(b) Let J be any function in J . By the monotonicity of the VI operation,
{T kJ} lies between the sequence of VI iterates starting from the zero func-
tion [which converges to J* from below by Prop. 4.1.8], and the sequence
of VI iterates starting from Ĵ = max{J, J*} [which converges to J* from
above by part (a)]. Q.E.D.

The following example shows why the compactness assumption of
part (b) is necessary to guarantee convergence of VI to J*, starting from
initial conditions J ≤ J*.

Example 4.2.3 (Counterexample for Convergence of VI)

Let X = [0,∞) ∪ {t}, with t being a cost-free and absorbing state, and let
U = (0,∞) ∪ {ū}, where ū is a special stopping control, which moves the
system from states x ≥ 0 to state t at unit cost. When uk is not the stopping
control ū, the system evolves according to

xk+1 = xk + uk, if xk ≥ 0 and uk 6= ū,

The cost per stage has the form

g(xk, uk) = xk, if xk ≥ 0 and uk 6= ū,

and g(xk, ū) = 1 when uk is the stopping control ū. Let also X0 = {t}. Then
it can be verified that

J∗(x) =
{

1 if x ≥ 0,
0 if x = t,

and that an optimal policy is to use the stopping control ū at every state (since
using any other control at states x ≥ 0, leads to unbounded accumulation of
positive cost). Thus it can be seen that Assumption 4.2.1 is satisfied. On the
other hand, the VI algorithm is

Jk+1(x) = min

{

1 + Jk(t), min
u≥0

{

x+ Jk(x+ u)
}

}

for x ≥ 0, and Jk+1(t) = Jk(t), and it can be verified by induction that
starting from J0 ≡ 0, the sequence {Jk} is given for all k by

Jk(x) =
{

min{1, kx} if x ≥ 0,
0 if x = t.

Thus Jk(0) = 0 for all k, while J∗(0) = 1, so the VI algorithm fails to converge
for the state x = 0. The difficulty here is that the compactness assumption
of Prop. 4.2.2(b) is violated.

We next consider the convergence of the PI algorithm. We implicitly
assume that the algorithm is well-defined in the sense that the minimization
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in the policy improvement operation (4.32) can be carried out for every
x ∈ X . Easily verifiable conditions that guarantee this also guarantee the
compactness condition of Prop. 4.2.2(b), and will be noted later. Moreover,
we will prove later a similar convergence result for a variant of the PI
algorithm where the policy evaluation is carried out approximately through
a finite number of VIs.

Proposition 4.2.3: (Convergence of PI) Let Assumption 4.2.1
hold. A sequence {Jµk} generated by the PI algorithm (4.31), (4.32),
satisfies Jµk (x) ↓ J*(x) for all x ∈ X .

Proof: If µ is a stationary policy and µ̄ satisfies the policy improvement
equation

µ̄(x) = arg min
u∈U(x)

{

g(x, u) + Jµ
(

f(x, u)
)}

, x ∈ X,

[cf. Eq. (4.32)], we have for all x ∈ X ,

Jµ(x) = g
(

x, µ(x)
)

+ Jµ
(

f
(

x, µ(x)
))

≥ min
u∈U(x)

{

g(x, u) + Jµ
(

f(x, u)
)}

= g
(

x, µ̄(x)
)

+ Jµ
(

f
(

x, µ̄(x)
))

,

(4.38)

where the first equality follows from Prop. 4.1.2 and the second equality
follows from the definition of µ̄. Let us fix x and let {xk} be the sequence
generated starting from x and using µ. By repeatedly applying Eq. (4.38),
we see that the sequence

{

J̃k(x)
}

defined by

J̃0(x) = Jµ(x),

J̃1(x) = Jµ(x1) + g
(

x, µ̄(x)
)

,

and more generally,

J̃k(x) = Jµ(xk) +

k−1
∑

t=0

g
(

xt, µ̄(xt)
)

, k = 1, 2, . . . ,

is monotonically nonincreasing. Thus, using also Eq. (4.38), we have

Jµ(x) ≥ min
u∈U(x)

{

g(x, u) + Jµ
(

f(x, u)
)}

= J̃1(x) ≥ J̃k(x),
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for all x ∈ X and k ≥ 1. This implies that

Jµ(x) ≥ min
u∈U(x)

{

g(x, u) + Jµ
(

f(x, u)
)}

≥ lim
k→∞

J̃k(x)

= lim
k→∞

{

Jµ(xk) +
k−1
∑

t=0

g
(

xt, µ̄(xt)
)

}

≥ lim
k→∞

k−1
∑

t=0

g
(

xt, µ̄(xt)
)

= Jµ̄(x),

where the last inequality follows since Jµ ≥ 0. In conclusion, the cost
function of µ̄ is no worse than the cost function of µ, and we have

Jµ(x) ≥ min
u∈U(x)

{

g(x, u) + Jµ
(

f(x, u)
)}

≥ Jµ̄(x), x ∈ X.

Using µk and µk+1 in place of µ and µ̄ in the preceding relation, we
obtain for all x ∈ X ,

Jµk (x) ≥ min
u∈U(x)

{

g(x, u) + Jµk

(

f(x, u)
)}

≥ Jµk+1(x). (4.39)

Thus the sequence {Jµk} generated by PI converges monotonically to some
function J∞ ∈ E+(X), i.e., Jµk ↓ J∞. Moreover, by taking the limit as
k → ∞ in Eq. (4.39), we have the two relations

J∞(x) ≥ min
u∈U(x)

{

g(x, u) + J∞
(

f(x, u)
)}

, x ∈ X,

and

g(x, u) + Jµk

(

f(x, u)
)

≥ J∞(x), x ∈ X, u ∈ U(x).

We now take the limit in the second relation as k → ∞, then the minimum
over u ∈ U(x), and then combine with the first relation, to obtain

J∞(x) = min
u∈U(x)

{

g(x, u) + J∞
(

f(x, u)
)}

, x ∈ X.

Thus J∞ is a solution of Bellman’s equation, satisfying J∞ ∈ J (since
Jµk ∈ J and Jµk ↓ J∞), so by the uniqueness result of Prop. 4.2.1, we
have J∞ = J*. Q.E.D.
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Example 4.2.4 (Counterexample for Convergence of PI)

Consider the deterministic two-state problem of Examples 4.1.3 and 4.2.1. Let
µ be the suboptimal policy that moves from state 1 to state t. Then Jµ(1) = 1,
Jµ(t) = 0, and it can be seen that µ satisfies the policy improvement equation

µ(1) = argmin
{

1 + Jµ(t), Jµ(1)
}

.

Thus PI may stop with the suboptimal policy µ.

Conditions that Imply the Asymptotic Termination Assumption

We will now discuss readily verifiable conditions guaranteeing that As-
sumption 4.2.1 holds. As noted earlier, it holds when X and U are finite,
a terminating policy exists from every x, and all cycles of the state tran-
sition graph have positive length. For the case where X is infinite, let us
assume that X is a normed space with norm denoted ‖ · ‖, and say that π
asymptotically terminates from x if the sequence {xk} generated starting
from x and using π converges to X0 in the sense that

lim
k→∞

dist(xk, X0) = 0,

where dist(x,X0) denotes the minimum distance from x to X0,

dist(x,X0) = min
y∈X0

‖x− y‖, x ∈ X.

We have the following proposition.

Proposition 4.2.4: Assume that the cost per stage is nonnegative
[cf. Eq. (4.28)], and for all states x outside the stopping set X0 we
have J∗(x) > 0 [cf. Eq. (4.33)]. Assume further the following:

(1) For every x ∈ Xf and ǫ > 0, there exits a policy π that asymp-
totically terminates from x and satisfies

Jπ(x) ≤ J*(x) + ǫ.

(2) For every ǫ > 0, there exists a δǫ > 0 such that for each x ∈ Xf

with
dist(x,X0) ≤ δǫ,

there is a policy π that terminates from x and satisfies Jπ(x) ≤ ǫ.

Then Assumption 4.2.1 holds.
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Proof: Fix x ∈ Xf and ǫ > 0. Let π be a policy that asymptotically
terminates from x, and satisfies Jπ(x) ≤ J*(x) + ǫ, as per condition (1).
Starting from x, this policy will generate a sequence {xk} such that for
some index k̄ we have

dist(xk̄, X0) ≤ δǫ,

so by condition (2), there exists a policy π̄ that terminates from xk̄ and is
such that Jπ̄(xk̄) ≤ ǫ. Consider the policy π′ that follows π up to index k̄
and follows π̄ afterwards. This policy terminates from x and satisfies

Jπ′(x) = Jπ,k̄(x) + Jπ̄(xk̄) ≤ Jπ(x) + Jπ̄(xk̄) ≤ J*(x) + 2ǫ,

where Jπ,k̄(x) is the cost incurred by π starting from x up to reaching xk̄.
Q.E.D.

Condition (1) of the preceding proposition requires that for states x ∈
Xf , the optimal cost J*(x) can be achieved arbitrarily closely with policies
that asymptotically terminate from x. Problems for which condition (1)
holds are those involving a cost per stage that is strictly positive outside of
X0. More precisely, condition (1) holds if for each δ > 0 there exists ǫ > 0
such that

min
u∈U(x)

g(x, u) ≥ ǫ, ∀ x ∈ X such that dist(x,X0) ≥ δ. (4.40)

Then for any x and policy π that does not asymptotically terminate from x,
we will have Jπ(x) = ∞, so that if x ∈ Xf , all policies π with Jπ(x) < ∞
must be asymptotically terminating from x. In applications, condition
(1) is natural and consistent with the aim of steering the state towards
the terminal set X0 with finite cost. Condition (2) is a “controllability”
condition implying that the state can be steered into X0 with arbitrarily
small cost from a starting state that is sufficiently close to X0. Here is an
important example where Prop. 4.2.4 applies.

Example 4.2.5 (Linear System Case)

Consider a linear system

xk+1 = Axk +Buk,

where A and B are given matrices, with the terminal set being the origin,
i.e., X0 = {0}. We assume the following:

(a) X = ℜn, U = ℜm, and there is an open sphere R centered at the origin
such that U(x) contains R for all x ∈ X.

(b) The system is controllable, i.e., one may drive the system from any
state to the origin within at most n steps using suitable controls, or
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equivalently that the matrix [B AB · · ·An−1B] has rank n (cf. Section
3.1 of Vol. I).

(c) g satisfies

0 ≤ g(x, u) ≤ β
(

‖x‖p + ‖u‖p
)

, ∀ (x, u) ∈ V,

where V is some open sphere centered at the origin, β, p are some
positive scalars, and ‖ · ‖ is the standard Euclidean norm.

Then condition (2) of Prop. 4.2.4 is satisfied, while x = 0 is cost-free and
absorbing [cf. Eq. (4.30)]. Still, however, in the absence of additional as-
sumptions, there may be multiple solutions to Bellman’s equation within J ,
as shown by Example 4.2.2. Assume now that in addition to (a)-(c), we have
for some positive scalars γ, p, minu∈U(x) g(x, u) ≥ γ‖x‖p for all x ∈ ℜn. Then
J∗(x) > 0 for all x 6= 0 [cf. Eq. (4.33)], while condition (1) of Prop. 4.2.4 is
satisfied as well [cf. Eq. (4.40)]. Thus by Prop. 4.2.4, Assumption 4.2.1 holds,
and Bellman’s equation has a unique solution within J .

Note that there are straightforward extensions of the conditions of
the preceding example to a nonlinear system. Note also that even for a
controllable system, it is possible that there exist states from which the
terminal set cannot be reached, because U(x) may imply constraints on
the magnitude of the control vector. Still the preceding analysis allows for
this case.

An Optimistic Form of PI

Let us consider a variant of PI where policies are evaluated inexactly, with
a finite number of VIs (cf. Section 2.3.3). In particular, this algorithm
starts with some J0 ∈ E(X), and generates a sequence of cost function and
policy pairs {Jk, µk} as follows: Given Jk, we generate µk according to

µk(x) = arg min
u∈U(x)

{

g(x, u) + Jk
(

f(x, u)
)}

, x ∈ X, (4.41)

and then we obtain Jk+1 with mk ≥ 1 VIs using µk:

Jk+1(x0) = Jk(xmk
) +

mk−1
∑

t=0

g
(

xt, µk(xt)
)

, x0 ∈ X, (4.42)

where {xt} is the sequence generated using µk and starting from x0, andmk

are arbitrary positive integers. Here J0 is a function in J that is required
to satisfy

J0(x) ≥ min
u∈U(x)

{

g(x, u) + J0
(

f(x, u)
)}

, ∀ x ∈ X, u ∈ U(x). (4.43)

For example J0 may be equal to the cost function of some stationary policy,
or be the function that takes the value 0 for x ∈ X0 and ∞ at x /∈ X0.
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Note that when mk ≡ 1 the method is equivalent to VI, while the case
mk = ∞ corresponds to the standard PI considered earlier.

Proposition 4.2.5: (Convergence of Optimistic PI) Let As-
sumption 4.2.1 hold. For the PI algorithm (4.41)-(4.42), where J0
belongs to J and satisfies the condition (4.43), we have Jk ↓ J*.

Proof: We have for all x ∈ X ,

J0(x) ≥ min
u∈U(x)

{

g(x, u) + J0
(

f(x, u)
)}

= g
(

x, µ0(x)
)

+ J0
(

f(x, µ0(x))
)

≥ J1(x)

≥ g
(

x, µ0(x)
)

+ J1
(

f(x, µ0(x))
)

≥ min
u∈U(x)

{

g(x, u) + J1
(

f(x, u)
)}

= g
(

x, µ1(x)
)

+ J1
(

f(x, µ1(x))
)

≥ J2(x),

where the first inequality is the condition (4.43), the second and third
inequalities follow because of the monotonicity of the m0 VIs (4.42) for µ0,
and the fourth inequality follows from the policy improvement equation
(4.41). Continuing similarly, we have

Jk(x) ≥ min
u∈U(x)

{

g(x, u) + Jk
(

f(x, u)
)}

≥ Jk+1(x),

for all x ∈ X and k. Moreover, since J0 ∈ J , we have Jk ∈ J for all k.
Thus Jk ↓ J∞ for some J∞ ∈ J , and similar to the proof of Prop. 4.2.3, it
follows that J∞ is a

Deterministic Optimal Control under Weaker Assumptions

The analysis of the present section can be extended in two directions:

(a) To eliminate the Asymptotic Termination Assumption 4.2.1, while
maintaining the cost nonnegativity assumption g ≥ 0. Then the
Bellman equation may have multiple solutions. The optimal cost
function J* is still the minimal solution by Prop. 4.1.3. However,
there is also a maximal solution within the class of functions J such
that J(x) = 0 for all x ∈ X0: this is the optimal cost function J+

over just the policies that terminate, and we may have J* 6= J+.
Moreover, there may exist an infinite number of additional solutions J̃
with J* ≤ J̃ ≤ J+. We refer to the monograph [Ber18] and the paper
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[Ber17xx] for a detailed discussion, and for VI and PI algorithms to
compute J+. The line of analysis bears some similarity with the one
of the present section, but is also quite different in other respects.

(b) To maintain the asymptotic termination Assumption 4.2.1, while al-
lowing both positive and negative costs g(x, u). Instead, the addi-
tional assumption that J*(x) > −∞ for all x ∈ X is imposed. In
this case analytical results and algorithms similar to the ones of the
present section can be obtained, by using a fairly similar analysis.

It is also possible to consider stochastic shortest path extensions of the
problem of this section, which involve a termination state and nonnegative
cost per stage. See the paper [Ber17c] for analysis of the set of solutions
of Bellman’s equation and algorithms, which are similar to the ones in (a)
above. Here, the notion of a proper policy is appropriately extended to an
infinite state space, and the function J+ is the optimal cost function over
the proper policies only. Assuming existence of at least one proper policy
and a bounded cost per stage g, J+ is shown to be the maximal solution of
Bellman’s equation within the class of bounded functions. The finite-state
case of this analysis is given in Section 4.4.

Minimax Control to a Terminal Set of States

Our analysis of this section can be readily extended to minimax problems
with a terminal set of states. Here the system is

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

where wk is the control of an antagonistic opponent that aims to maximize
the cost function. We assume that wk is chosen from a given set W to
maximize the sum of costs per stage, which are assumed nonnegative:

0 ≤ g(x, u, w), x ∈ X, U ∈ U(x), w ∈ W.

We wish to choose a policy π = {µ0, µ1, . . .} to minimize the cost
function

Jπ(x0) = lim
N→∞

sup
wk∈W

k=0,1,...

N−1
∑

k=0

g
(

xk, µk(xk), wk

)

,

where
{

xk, µk(xk)
}

is a state-control sequence corresponding to π and the
sequence {w0, w1, . . .}. This problem admits a similar analysis to the one
for stochastic problems under Assumption P in Section 4.1. In particular,
the results of that section on the validity of Bellman’s equation, the op-
timality conditions, and the convergence of VI, all have minimax analogs.
The reason is that these results hold in the context of a more general ab-
stract DP model that contains as special cases both stochastic and minimax
models: the monotone increasing models of [Ber18], Section 4.3.
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To formulate a minimax problem similar to the one of the determinis-
tic problem of the present section, we introduce a termination set X0. The
states in this set are cost-free and absorbing, i.e.,

g(x, u, w) = 0, x = f(x, u, w),

for all x ∈ X0, u ∈ U(x), w ∈ W , and we assume that all states outside X0

have strictly positive optimal cost, so that

X0 =
{

x ∈ X | J*(x) = 0
}

.

We next adapt the definition of termination. In particular, given a
state x, in the minimax context we say that a policy π terminates from x
if there exists an index k̄ [which depends on (π, x)] such that the sequence
{xk}, which is generated starting from x and using π, satisfies xk̄ ∈ X0 for
all sequences {w0, . . . , wk̄−1} with wt ∈ W for all t = 0, . . . , k̄−1. Then the
asymptotic termination Assumption 4.2.1 is modified to reflect this new
definition of termination, and our results can be readily extended, with
Props. 4.2.1, 4.2.2, 4.2.3, and 4.2.5, and their proofs, holding essentially as
stated.

The main adjustment needed is to replace expressions of the forms

g(x, u) + J
(

f(x, u)
)

and

J(xk) +

k−1
∑

t=0

g(xt, ut)

in these proofs with

sup
w∈W

{

g(x, u, w) + J
(

f(x, u, w)
)}

and

sup
wt∈W

t=0,...,k−1

{

J(xk) +

k−1
∑

t=0

g(xt, ut, wt)

}

,

respectively.
If the state and control spaces are finite, then the assumption that

all states outside X0 have strictly positive optimal cost can be circum-
vented, by reformulating the minimax problem into another minimax prob-
lem where the assumption is satisfied. The technique for doing this is the
same as the one of Section 4.1.4, and essentially lumps all the states x
such that J*(x) = 0 into a single termination state for the reformulated
problem.
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4.3 LINEAR-QUADRATIC PROBLEMS AND ADAPTIVE DP

In this section we consider the case of the linear system

xk+1 = Axk +Buk + wk, k = 0, 1, . . . ,

where xk ∈ ℜn, uk ∈ ℜm for all k, and the matrices A, B are known. As
in Sections 3.1 and 4.2 of Vol. I, we assume that the random disturbances
wk are independent with zero mean and finite second moments. The cost
function is quadratic and has the form

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...,N−1

{

N−1
∑

k=0

αk
(

x′
kQxk + µk(xk)′Rµk(xk)

)

}

,

where α ∈ (0, 1] is the discount factor, Q is a positive semidefinite sym-
metric n×n matrix, and R is a positive definite symmetric m×m matrix.
Clearly, the positive cost Assumption P of Section 4.1 holds, and the results
of that section apply. We will consider two cases:

(a) The undiscounted case where α = 1. Then we will assume the deter-
ministic case where wk = 0, so that the optimal cost function J* is
guaranteed to be real-valued.

(b) The discounted case where 0 < α < 1. Then the optimal cost function
J* is real-valued, even when wk has nonzero second moment.

The Undiscounted Case

Consider first the case where α = 1, and the problem is deterministic, so
that wk = 0 for all k. We will apply the theory of Sections 4.1 and 4.2 as
follows:

(1) We use Prop. 4.1.8 to show that the sequence {T kJ0}, generated by
VI starting from the identically zero function J0, converges to J*,
and that an optimal stationary policy exists. Indeed, based on the
analysis of Section 3.1 of Vol. I, we have

(TJ0)(x) = min
u

[x′Qx+ u′Ru] = x′Qx,

(T 2J0)(x) = min
u∈ℜn

[

x′Qx+ u′Ru+ (TJ0)(Ax+Bu)
]

= min
u∈ℜn

[

x′Qx+ u′Ru+ (Ax+Bu)′Q(Ax+Bu)
]

,

and more generally,

(T kJ0)(x) = x′Pkx, k = 1, 2, . . . ,
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where
P1 = Q

and Pk+1 is generated from Pk using the Riccati equation

Pk+1 = A′
(

Pk − PkB(B′PkB +R)−1B′Pk

)

A+Q, k = 1, 2, . . . ,

Clearly Pk is positive semidefinite, which in view of the positive defi-
niteness of R, implies that the compactness condition of Prop. 4.1.8 is
satisfied, so that T kJ0 ↑ J*, and an optimal stationary policy exists.

(2) Assuming controllability of the pair (A,B), it also follows that for
k ≥ n, J*(x) is bounded from above by the cost corresponding to a
control sequence that forces x to the origin in n steps and applies zero
control after that. Thus Pk converges to some positive semidefinite
symmetric matrix P ∗, and we have

J*(x) = x′P ∗x, x ∈ ℜn. (4.44)

Moreover, by taking the limit as k → ∞ in the Riccati equation, we
see that P ∗ is a solution of the steady-state Riccati equation

P = A′
(

P − PB(B′PB +R)−1B′P
)

A+Q. (4.45)

If in addition we assume observability of the pair (A,C), where Q =
CC′, then Prop. 3.1.1 of Section 3.1 in Vol. I shows that Pk is positive
definite for sufficiently large k, P ∗ is also positive definite, and it is
the unique solution of the Riccati equation (4.45) within the class of
positive semidefinite matrices.

(3) From Props. 4.1.5 and 4.1.8, it follows that there exists an optimal
stationary policy µ∗, which is obtained by minimizing in the right-
hand side of Bellman’s equation,

x′P ∗x = min
u∈ℜm

[

x′Qx+ u′Ru+ (Ax +Bu)′P ∗(Ax+ bu)
]

,

assuming that the pair (A,B) is controllable so that J* is real-valued.
By setting the gradient of the minimized expression to 0, we obtain

µ∗(x) = L∗x, x ∈ ℜn, (4.46)

where L∗ is the matrix

L∗ = −(B′P ∗B +R)−1B′P ∗A. (4.47)

This policy is attractive for practical implementation since it is lin-
ear and stationary. Also, from Prop. 3.1.1 of Section 3.1, Vol. I, we
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have that the corresponding optimal closed-loop system is stable if in
addition the pair (A,C) is observable.

(4) We next view the problem within the framework of Section 4.2, with
the terminal set of states being just the origin:

X0 = {0},

assuming both the controllability and observability assumptions noted
earlier. Clearly, when at state x = 0, it is optimal to stay at that state
by applying u = 0. Thus we may view X0 as a set of cost-free and
absorbing states, as required by the framework of Section 4.2. To
show that Assumption 4.2.1 is satisfied, we first note that the observ-
ability assumption guarantees that J*(x) > 0 for all x /∈ X0 [cf. Eq.
(4.44)]. Next, we note that by the stability of the optimal closed-loop
system and the controllability assumption, for every pair (x, ǫ) with
x ∈ Xf and ǫ > 0, there exists a policy π that terminates starting
from x and satisfies Jπ(x) ≤ J*(x) + ǫ; this is the policy that follows
the optimal policy up to getting within a sufficiently small distance
from the origin, and then following a minimum cost policy that drives
the system to the origin (such a policy exists by the controllability
assumption).

(5) Having shown that Assumption 4.2.1 is satisfied, the theory of Section
4.2 applies. In particular:

(i) From Prop. 4.2.1, it follows that J* is the unique solution of
Bellman’s equation within the class of functions

J =
{

J ∈ E+(X) | J(x) = 0, ∀ x ∈ X0

}

. (4.48)

Note that for this the controllability and observability assump-
tions made earlier are necessary, cf. Example 4.2.2.

(ii) From Prop. 4.2.2, it follows that VI converges to J* starting
from any function in J (not just starting from the identically
zero function, or an arbitrary positive semidefinite quadratic
function, as implied by the convergence properties of the Riccati
equation, cf. Prop. 3.1.1 of Section 3.1, Vol. I).

(iii) From Props. 4.2.3 and 4.2.5, PI and its optimistic variant con-
verge to J*.

Policy Iteration for Undiscounted Problems

Let us consider the deterministic undiscounted linear-quadratic problem,
under the controllability and observability assumptions for the pairs (A,B)
and (A,C), made earlier. Since the optimal policy µ∗ of Eqs. (4.46)-(4.47)
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belongs to the class of linear policies with a contractive corresponding
closed-loop system, it makes sense to try to confine the PI algorithm within
that class of policies. Indeed this is possible as we will now show.

Consider first the cost evaluation of a linear policy µ of the form

µ(x) = Lµx.

The corresponding cost function Jµ is the unique solution of the Bellman
equation

Jµ(x) = x′Qx+ (Lµx)′RLµx+ Jµ(Ax+BLµx)

= x′(Q+ Lµ
′RLµ)x+ Jµ

(

(A+BLµ)x
)

,

within the class of functions J of Eq. (4.48). Moreover, Jµ is the limit of
the VI sequence {T k

µJ0}, where J0 is the identically zero function. Using
the relation

(T k+1
µ J0)(x) = x′(Q + Lµ

′RLµ)x+ (T k
µJ0)

(

(A+BLµ)x
)

, k = 0, 1, . . . ,

we can verify by induction that each of the functions T k
µJ0 is quadratic of

the form
(T k

µJ0)(x) = x′Pµ,kx,

where Pµ,0 = 0 and

Pµ,k+1 = (A+BLµ)′Pµ,k(A+BLµ) +Q+ L′
µRLµ, k = 0, 1, . . . .

If the closed-loop system corresponding to µ is contractive, the eigenvalues
of the matrix A+BLµ lie strictly within the unit circle, and the preceding
iteration involves a contraction with respect to some norm, so it converges
to Pµ, the unique solution of the linear equation

Pµ = (A+BLµ)′Pµ(A+BLµ) +Q+ L′
µRLµ. (4.49)

Moreover, we have
Jµ(x) = x′Pµx, x ∈ ℜn.

Consider next the policy improvement phase of PI, given the current
policy µ. It generates an improved policy µ by finding for each x, the
control µ(x) that minimizes over u ∈ ℜm the Q-factor

Qµ(x, u) = x′Qx+ u′Ru+ (Ax +Bu)′Pµ(Ax+ Bu). (4.50)

By setting to zero the gradient of this expression with respect to u, we see
that µ is linear of the form

µ(x) = Lµx, (4.51)
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where Lµ is given by

Lµ = −(B′PµB +R)−1B′PµA; (4.52)

cf. Eq. (4.47). Moreover it can be seen that the closed-loop system cor-
responding to µ is contractive (intuitively, this is so since the closed-loop
system corresponding to µ is contractive, and µ is an improved policy over
µ).

In conclusion, under our assumptions, the PI algorithm, starting with
a linear policy µ0 under which the closed-loop system is stable, it generates
a sequence of linear policies {µk} and corresponding gain matrices Lµk that
converge to the optimal, in the sense that Jµk (x) ↓ J*(x) for all x (cf. Prop.
4.2.3), while Lµk → L∗.

The Discounted Case

Consider next the case where 0 < α < 1 while the problem need not be
deterministic. Then we can use the theory of Section 4.1, but not the theory
of Section 4.2 (which applies only to deterministic problems). However, it
turns out that the results for the deterministic case derived earlier still
apply in suitably modified form.

In particular, we use the VI algorithm, starting from the identically
zero function J0, to obtain the sequence {T kJ0}. We have

(TJ0)(x) = min
u∈ℜm

[x′Qx+ u′Ru] = x′Qx,

(T 2J0)(x) = min
u∈ℜm

E
{

x′Qx+ u′Ru+ α(TJ0)(Ax +Bu+ w)
}

= min
u∈ℜm

E
{

x′Qx+ u′Ru+ α(Ax +Bu+ w)′Q(Ax+Bu+ w)
}

,

= min
u∈ℜm

[

x′Qx+ u′Ru+ α(Ax+Bu)′Q(Ax+Bu)
]

+ αE{w′Qw}.

Proceeding similarly for every k, we obtain more generally,

(T kJ0)(x) = x′Pkx+

k−1
∑

t=0

αk−tE{w′Ptw}, k = 1, 2, . . . , (4.53)

where
P1 = Q

and Pk+1 is generated from Pk using the Riccati equation

Pk+1 = A′
(

αPk − α2PkB(αB′PkB +R)−1B′Pk

)

A+Q, k = 0, 1, . . .

By defining R̃ = R/α and Ã =
√
αA, this equation may be written as

Pk+1 = Ã′
(

Pk − PkB(B′PkB + R̃)−1B′Pk

)

Ã+Q,
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and has the Riccati equation form considered in the undiscounted case.
Thus the generated matrix sequence {Pk} converges to a positive defi-
nite symmetric matrix P ∗, provided the pairs (Ã, B) and (Ã, C), where
Q = C′C, are controllable and observable, respectively. Since Ã =

√
αA,

controllability and observability of (A,B) or (A,C) are clearly equivalent
to controllability and observability of (Ã, B) or (Ã, C), respectively.

Since the compactness condition of Prop. 4.1.8 is satisfied, it follows
that {T kJ0}, given by Eq. (4.53), converges to J*, so that

J*(x) = x′P ∗x+ lim
k→∞

k−1
∑

t=0

αk−tE{w′Ptw}, x ∈ ℜn,

where the matrix P ∗ is the unique solution of the steady-state Riccati
equation

P = A′
(

αP − α2PB(αB′PB +R)−1B′P
)

A+Q.

Because Pk → P ∗, it can also be seen that the limit

c = lim
k→∞

k−1
∑

t=0

αk−tE{w′Ptw}

is well defined, and in fact

c =
α

1− α
E{w′P ∗w}.

Finally, the optimal stationary policy µ∗, obtained by minimization in Bell-
man’s equation, has the form

µ∗(x) = −α(αB′KB +R)−1B′KAx, x ∈ ℜn.

Moreover, similar to the case where α = 1, the problem can be solved using
the PI algorithm (see Exercise 4.16).

4.3.1 Simulation-Based Adaptive Control

We will now consider the PI algorithm of Eqs. (4.49)-(4.52), for the case
where the matrices A and B of the deterministic system

xk+1 = Axk +Buk

are unknown. Instead, we will assume that we have access to a computer
simulator of the real system (or perhaps the real system itself), which for
any given state-control pair (x, u), can generate the successor stateAx+Bu.
This is a problem that can be addressed with the methodology of adaptive
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control that we have discussed in Section 6.7 of Vol. I. In this section,
however, we will follow a different approach that is based on PI.

It is of course possible to consider a two-phase procedure: first to
calculate exactly the matrices A and B by various estimation methods, and
then apply the PI algorithm, but this may not be the preferred option in a
given practical situation. For example it may be cumbersome to separate
the optimization process into system identification and control calculation
phases. Moreover in practice, the matrices A and B may change as the
system is controlled, so the two-phase procedure may need to be repeated.

An alternative is to execute the PI algorithm by using the simulator
to evaluate the Q-factors

Qµ(x, u) = x′Qx+ u′Ru+ Jµ(Ax +Bu)

= x′Qx+ u′Ru+ (Ax +Bu)′Pµ(Ax+ Bu),
(4.54)

of the current policy µ [cf. Eq. (4.50)], and use them to calculate the im-
proved policy µ by the minimization

µ(x) = arg min
u∈ℜm

Qµ(x, u). (4.55)

For an on-line context, with A and B changing over time, this approach is
more convenient than the two-phase procedure noted above, and seems to
have better stability properties in practice.

We note that Q-factors were introduced in Section 2.2.3 and will play
a major role in the simulation-based approximate DP methodology to be
discussed in Chapters 6 and 7. An important fact for our purposes in this
section is that the Q-factors of µ determine the cost function Jµ via the
equation

Jµ(x) = Qµ

(

x, µ(x)
)

,

which is just Bellman’s equation for Jµ. Thus the equation (4.54) can be
written as

Qµ(x, u) = x′Qx+ u′Ru+Qµ

(

(Ax+Bu), µ(Ax+Bu)
)

. (4.56)

We now note from Eq. (4.54) that the Q-factor of any linear policy µ
is quadratic,

Qµ(x, u) = (x′ u′ )Kµ

(

x
u

)

,

where Kµ is the (n+m)× (n+m) symmetric matrix

Kµ =

(

Q+A′PµA A′PµB
B′PµA R+B′PµB

)

.

Thus the Q-factors Qµ(x, u) are determined from the entries of Kµ, which
as we will show next, can be estimated by using the system simulator.
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In particular, let us introduce the column vector rµ, which consists of
the (n+m)2 entries of the matrix Kµ. Let also φ(x, u) be the column vector
whose components are all the possible products of the scalar components
of x and u, i.e.,

xixj , xiuℓ, uℓxi, uℓut, i, j = 1, . . . ,m, ℓ, t = 1, . . . ,m.

For example in the scalar case where n = m = 1,

φ(x, u) =







x2

xu
ux
u2






.

Then the Q-factors can be expressed as

Qµ(x, u) = φ(x, u)′rµ.

By using this inner product form for Qµ into the Bellman equation
(4.56), we have for all (x, u),

φ(x, u)′rµ = x′Qx+ u′Ru+ φ
(

(Ax+Bu), µ(Ax +Bu)
)′
rµ. (4.57)

Given µ, this is an overdetermined system of an infinite number of equations
for rµ [one equation for each pair (x, u)]. To solve this system (exactly) we
can generate by simulation a sufficiently large set of triples (x, u,Ax+Bu),
to form a corresponding nonsingular system of finite number of equations
for rµ. Having computed rµ, the improved policy µ can be generated
according to the minimization (4.55), and the process can be repeated to
compute rµ and so on. Note that this process generates identical results
with the exact PI method of Eqs. (4.49)-(4.52), which could be applied if
A and B were exactly known.

In practice, the simulation-based PI method of this section can be
applied in other more general settings. For example, when the results
of the simulation contain errors, we may prefer to solve the system of
equations (4.57) approximately by generating a large number of (noisy)
samples (x, u,Ax+Bu), and obtain an approximate solution using a linear
least squares method. In other cases, in order to deal with the potentially
large dimension of rµ, we may replace the vector φ(x, u) by a simpler vector.
We refer to the literature for examples of application of this methodology.

4.4 STOCHASTIC SHORTEST PATHS UNDER WEAK
CONDITIONS

In this section we consider undiscounted total cost problems where the cost
per stage can take both positive and negative values, so the methodology



272 Noncontractive Total Cost Problems Chap. 4

of the earlier sections in this chapter does not apply. We will focus on the
finite-state SSP problems of Chapter 3, but under weaker conditions that
do not guarantee the powerful results of that chapter. In particular, we will
replace the infinite cost assumption of improper policies with the condition
that J* is real-valued. Under our assumptions, J* need not be a solution
of Bellman’s equation, and even when it is, it may not be obtained by VI
starting from any initial condition other than J* itself, while the standard
form of PI may not be convergent.

We will show instead that Ĵ , which is the optimal cost function over
proper policies only, is the unique solution of Bellman’s equation within
the class of functions J ≥ Ĵ . Moreover VI converges to Ĵ from any initial
condition J ≥ Ĵ , while a form of PI yields a sequence of proper policies
that asymptotically attains the optimal value Ĵ . Results of this type are
exceptional in the context of our analysis in this book, where J* is typically
shown to satisfy Bellman’s equation. Our line of analysis is also unusual,
and relies on a perturbation argument, which induces a more effective dis-
crimination between proper and improper policies in terms of finiteness of
their cost functions. This argument depends critically on the assumption
that J* is real-valued.

We use the notation and terminology of Chapter 3. In particular, we
consider an SSP problem with states 1, . . . , n, plus the termination state
t. The control space is denoted by U , and the set of feasible controls at
state i is denoted by U(i). We assume that U is a finite set, although in a
more advanced treatment of the problem, we may allow U to be infinite as
long as U(i) satisfies the compactness conditions discussed in Section 3.2
(see also [BeY16] for this analysis). From state i under control u ∈ U(i), a
transition to state j occurs with probability pij(u) and incurs an expected
one-stage cost g(i, u). At state t we have ptt(u) = 1, g(t, u) = 0, for all
u ∈ U(t), i.e., t is absorbing and cost-free.

As in Chapter 3, we define the total cost of π = {µ0, µ1, . . .} for initial
state i to be

Jπ(i) = lim sup
N→∞

E

[

N−1
∑

k=0

g(xk, uk)
∣

∣

∣ x0 = i

]

, (4.58)

where the expectation is with respect to the probability law induced by
π. The use of lim sup in the definition of Jπ is necessary because the limit
as N → ∞ of the N -stage costs may not exist. However, the statements
of our results, our analysis, and our algorithms are also valid if lim sup
is replaced by lim inf. The optimal cost at state i, denoted J*(i), is the
minimum of Jπ(i) over π. Note that in general there may exist states i such
that Jπ(i) = ∞ or Jπ(i) = −∞ for some policies π, as well as J*(i) = ∞
or J*(i) = −∞.

Let us review the abstract notation relating to the mappings that
arise in optimality conditions and algorithms. We consider the mapping
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H : {1, . . . , n} × U × En 7→ E defined by

H(i, u, J) = g(i, u) +

n
∑

j=1

pij(u)J(j), i = 1, . . . , n, u ∈ U(i), J ∈ En,

(4.59)
where we denote by E the set of extended real numbers, E = ℜ∪{∞,−∞},
and by En the set of n-dimensional vectors with extended real-valued com-
ponents. When working with vectors J ∈ En, we make sure that the sum
∞−∞ never appears in our analysis. We also consider the mappings Tµ,
µ ∈ M, and T defined for all i = 1, . . . , n, and J ∈ En by

(TµJ)(i) = H
(

i, µ(i), J
)

, (TJ)(i) = min
u∈U(i)

H(i, u, J).

We will frequently use the monotonicity property of Tµ and T , i.e.,

J ≤ J ′ ⇒ TµJ ≤ TµJ ′, T J ≤ TJ ′.

The fixed point equations J* = TJ* and Jµ = TµJµ are the Bellman
equations for the optimal cost function and for the cost function of µ,
respectively.

We will now summarize the SSP analysis of Chapter 3, and preview
its differences from the analysis of this section. We recall that a policy µ
is said to be proper if when using µ, there is positive probability that the
termination state t will be reached after at most n stages, regardless of the
initial state; i.e., if

ρµ = max
i=1,...,n

P{xn 6= t | x0 = i, µ} < 1.

Otherwise, µ is said to be improper . An important property is that for a
proper policy µ, Tµ is a weighted sup-norm contraction. For an improper
policy µ, Tµ is not a contraction with respect to any norm. Moreover, T
also need not be a contraction with respect to any norm.

The analysis of Chapter 3 was based on the following assumption,
which we will aim to weaken in this section.

Infinite Cost Conditions:

(a) There exists at least one proper policy.

(b) For every improper policy there is an initial state that has infinite
cost under this policy.

An important consequence of these conditions is that a improper pol-
icy cannot be optimal [since the costs Jµ(i) of a proper policy µ are real-
valued], so by focusing the analysis on the “well-behaved” proper policies,
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a

t b
a 1 2 1 2 t b

t b Destination

u Cost 1 Cost 1

u Cost 1 Cost 1

Figure 4.4.1. A deterministic shortest path problem with a single node 1 and a
termination node t. At 1 there are two choices; a self-transition, which costs a,
and a transition to t, which costs b.

we can exploit their contraction properties, and obtain favorable algorith-
mic results that allow the computation of J* and an optimal proper policy.
In the absence of the infinite cost conditions we employ a different approach
in order to focus the analysis on the proper policies. We introduce

Ĵ(i) = min
µ: proper

Jµ(i), i = 1, . . . , n, (4.60)

the optimal cost function over proper policies, and show that it is the one
that can be readily computed by VI and PI (and not J*). In particular, it
turns out that when Ĵ 6= J*, our VI and PI algorithms will only be able to
obtain Ĵ , and not J*.

The following deterministic shortest path problem, also used in Ex-
ample 4.1.3 to demonstrate exceptional behavior, illustrates some of the
consequences of violation of the infinite cost conditions.

Example 4.4.1 (Deterministic Shortest Path Problem)

Here there is a single state 1 in addition to the termination state t (cf. Fig.
4.4.1). At state 1 there are two choices: a self-transition which costs a and a
transition to t, which costs b. The mapping H has the form

H(1, u, J) =
{

a+ J if u: self transition,
b if u: transition to t,

J ∈ ℜ,

and the mapping T has the form

TJ = min{a+ J, b}, J ∈ ℜ.

There are two policies: the policy that self-transitions at state 1, which is
improper, and the policy that transitions from 1 to t, which is proper. When
a < 0 the improper policy is optimal and we have J∗(1) = −∞. The optimal
cost is finite if a > 0 or a = 0, in which case the cycle has positive or zero
length, respectively. Note the following:
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(a) If a > 0, the infinite cost conditions are satisfied, and the optimal cost,
J∗(1) = b, is the unique fixed point of T .

(b) If a = 0 and b ≥ 0, the set of fixed points of T (which has the form
TJ = min{J, b}), is the interval (−∞, b]. Here the improper policy is
optimal for all b ≥ 0, and the proper policy is also optimal if b = 0.

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost
at state 1 (which is b) is a fixed point of T . The optimal cost, J∗(1) = 0,
lies in the interior of the set of fixed points of T , which is (−∞, b]. Thus
the VI method that generates {T kJ} starting with J 6= J∗ cannot find
J∗; in particular if J is a fixed point of T , VI stops at J , while if J
is not a fixed point of T (i.e., J > b), VI terminates in two iterations
at b 6= J∗(1). Moreover, the standard PI method is unreliable in the
sense that starting with the suboptimal proper policy µ, it may stop
with that policy because (TµJµ)(1) = b = min

{

Jµ(1), b
}

= (TJµ)(1)
[the other/optimal policy µ∗ also satisfies (Tµ∗Jµ)(1) = (TJµ)(1), so a
rule for breaking the tie in favor of µ∗ is needed but such a rule may
not be obvious in general].

(d) If a = 0 and b < 0, only the proper policy is optimal, and we have
J∗(1) = b. Here it can be seen that the VI sequence {T kJ} converges
to J∗(1) for all J ≥ b, but stops at J for all J < b, since the set of fixed
points of T is (−∞, b]. Moreover, starting with either the proper policy
µ∗ or the improper policy µ, the standard form of PI may oscillate, since
(Tµ∗Jµ)(1) = (TJµ)(1) and (TµJµ∗)(1) = (TJµ∗)(1), as can be easily
verified [the optimal policy µ∗ also satisfies (Tµ∗Jµ∗ )(1) = (TJµ∗)(1)
but it is not clear how to break the tie; compare also with case (c)
above].

As we have seen in case (c) of the preceding example, VI may fail
starting from J 6= J∗. Actually in cases (b)-(d) the one-stage costs are ei-
ther all nonnegative or nonpositive, so they belong to the classes of positive
and negative cost models of Section 4.1, respectively. From the results for
these models (cf. Prop. 4.1.7), there is an initial condition, namely J = 0,
starting from which VI converges to J∗. However, this is not necessar-
ily the best initial condition; for example in deterministic shortest path
problems, initial conditions J ≥ J∗ are generally preferred and result in
polynomial complexity computation assuming that all cycles have positive
length. By contrast VI has only pseudopolynomial complexity when started
from J = 0.

The Analysis of this Section

In the remainder of this section, we will weaken part (b) of the infinite cost
conditions, by assuming that J* is real-valued instead of requiring that each
improper policy has infinite cost from some initial states. In particular, we
adopt the following standing assumption:
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Weak Shortest Path Conditions:

(a) There exists at least one proper policy.

(b) J* is real-valued.

Under this assumption, we will discuss the properties of Bellman’s
equation, and the behavior of VI and PI. In particular, in Section 4.4.1,
we show that Ĵ is the unique fixed point of T within the set {J | J ≥ Ĵ},
and can be computed by VI starting from any J within that set. We
will provide an example showing that J* may not be a fixed point of T
if g can take both positive and negative values, and the SSP problem is
nondeterministic.

The idea of the analysis is to introduce an additive perturbation δ > 0
to the cost of each transition. Since J* is real-valued, the cost function of
each improper policy becomes infinite for some states, thereby bringing to
bear the infinite cost conditions for the perturbed problem, while the cost
function of each proper policy changes by only an O(δ) amount. By con-
sidering the limit as δ → 0, this line of analysis yields results relating to
the solution of Bellman’s equation and the convergence of VI. The pertur-
bation idea also applies in the context of PI, and in Section 4.4.2, we will
propose a perturbed version of PI that converges to Ĵ , as a replacement
of the standard form of PI, which may fail as we have seen in case (d) of
Example 4.4.1. Finally, in Section 4.4.3, we will show that Ĵ (but not J*)
can be computed using a linear programming approach.

4.4.1 A Perturbation Approach

The key idea of the analysis is that by adding a positive perturbation δ to
g, we are guaranteed to drive to ∞ the cost Jµ(i) of each improper policy µ,
for at least one state i, thereby differentiating proper and improper policies.

We thus consider for each scalar δ > 0 an SSP problem, referred to as
the δ-perturbed problem, which is identical to the original problem, except
that the cost per stage is

gδ(i, u) =

{

g(i, u) + δ if i = 1, . . . , n,
0 if i = t,

and the corresponding mappings Tµ,δ and Tδ are given by

Tµ,δJ = TµJ + δe, TδJ = TJ + δe, ∀ J ∈ ℜn,

where e is the unit vector [e(i) ≡ 1]. This problem has the same proper
and improper policies as the original. The corresponding cost function of
a policy π = {µ0, µ1, . . .} ∈ Π is given by

Jπ,δ(i) = lim sup
N→∞

Jπ,δ,N(i), i = 1, . . . , n,
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with

Jπ,δ,N(i) = E

[

N−1
∑

k=0

gδ(xk, uk)
∣

∣

∣ x0 = i

]

.

We denote by Jµ,δ the cost function of a stationary policy µ for the δ-
perturbed problem, and by J*

δ the corresponding optimal cost function,

J*
δ = min

π∈Π
Jπ,δ.

Note that for every proper policy µ, the function Jµ,δ is real-valued,
and that

lim
δ↓0

Jµ,δ = Jµ.

This is because for a proper policy, the extra δ cost per stage will be in-
curred only a finite expected number of times prior to termination, starting
from any state. This is not so for improper policies, and in fact the idea
behind perturbations is that the addition of δ to the cost per stage in
conjunction with the assumption that J* is real-valued imply that if µ is
improper, then

Jµ,δ(i) = lim
k→∞

(T k
µ,δJ)(i) = ∞, (4.61)

for all i 6= t that are recurrent under µ and all J ∈ ℜn. Thus part (b)
of the infinite cost conditions holds for the δ-perturbed problem, and the
associated strong results noted earlier come into play. In particular, we
have the following proposition.

Proposition 4.4.1: Under the weak shortest path conditions, for
each δ > 0:

(a) J*
δ is the unique solution of the equation

J(i) = (TJ)(i) + δ, i = 1, . . . , n.

(b) A policy µ is optimal for the δ-perturbed problem (Jµ,δ = J*
δ ) if

and only if TµJ*
δ = TJ*

δ . Moreover, for the δ-perturbed problem,
all optimal policies are proper and there exists at least one proper
policy that is optimal.
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(c) The optimal cost function over proper policies Ĵ [cf. Eq. (4.60)]
satisfies

Ĵ(i) = lim
δ↓0

J∗
δ (i), i = 1, . . . , n.

(d) There exists δ > 0 such that if δ ∈ (0, δ], an optimal policy for
the δ-perturbed problem is optimal within the class of proper
policies.

Proof: (a), (b) The proof of these parts follows from the discussion pre-
ceding the proposition, and the results of Chapter 3, which hold under the
infinite cost conditions [the equation of part (a) is Bellman’s equation for
the δ-perturbed problem].

(c) For an optimal proper policy µ∗
δ of the δ-perturbed problem [cf. part

(b)], we have

Ĵ = min
µ:proper

Jµ ≤ Jµ∗
δ
≤ Jµ∗

δ
,δ = J*

δ ≤ Jµ′,δ, ∀ µ′ : proper.

Since for every proper policy µ′, we have limδ↓0 Jµ′,δ = Jµ′ , it follows that

Ĵ ≤ lim
δ↓0

Jµ∗
δ
≤ Jµ′ , ∀ µ′ : proper.

By taking the minimum over all µ′ that are proper, the result follows.

(d) For every proper policy µ we have limδ↓0 Jµ,δ = Jµ. Hence if a proper
µ is nonoptimal within the class of proper policies, it is also nonoptimal for
the δ-perturbed problem for all δ ∈ [0, δµ], where δµ is some positive scalar.
Let δ be the minimum δµ over the finite set of nonoptimal proper policies µ.
Then for δ ∈ (0, δ], an optimal policy for the δ-perturbed problem cannot
be nonoptimal within the class of proper policies. Q.E.D.

Convergence of Value Iteration

The preceding perturbation-based analysis, can be used to investigate prop-
erties of Ĵ by using properties of J*

δ and taking limit as δ ↓ 0. In particular,

we use the preceding proposition to show that Ĵ is a fixed point of T , and
can be obtained by VI starting from any J ≥ Ĵ .

Proposition 4.4.2: Under the weak shortest path conditions, the
following hold:

(a) The optimal cost function over proper policies Ĵ is the unique
fixed point of T within the set {J ∈ ℜn | J ≥ Ĵ}.
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(b) We have T kJ → Ĵ for every J ∈ ℜn with J ≥ Ĵ .

(c) Let µ be a proper policy. Then µ is optimal within the class of
proper policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

Proof: (a), (b) For all proper µ, we have Jµ = TµJµ ≥ TµĴ ≥ T Ĵ. Taking

minimum over proper µ, we obtain Ĵ ≥ T Ĵ . Conversely, for all δ > 0 and
µ ∈ M, we have

J*
δ = TJ*

δ + δe ≤ TµJ*
δ + δe.

Taking limit as δ ↓ 0, and using Prop. 4.4.1(c), we obtain Ĵ ≤ TµĴ for all

µ ∈ M. Taking minimum over µ ∈ M, it follows that Ĵ ≤ T Ĵ . Thus Ĵ is
a fixed point of T .

For all J ∈ ℜn with J ≥ Ĵ and proper policies µ, we have by using
the relation Ĵ = T Ĵ just shown,

Ĵ = lim
k→∞

T kĴ ≤ lim
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ.

Taking the minimum over all proper µ, we obtain

Ĵ ≤ lim
k→∞

T kJ ≤ Ĵ , ∀ J ≥ Ĵ .

This proves part (b) and also the claimed uniqueness property of Ĵ in part
(a).

(c) If µ is a proper policy with Jµ = Ĵ , we have Ĵ = Jµ = TµJµ =

TµĴ , so, using also the relation Ĵ = T Ĵ [cf. part (a)], we obtain TµĴ =

T Ĵ . Conversely, if µ satisfies TµĴ = T Ĵ , then from part (a), we have

TµĴ = Ĵ and hence limk→∞ T k
µ Ĵ = Ĵ . Since µ is proper, we obtain Jµ =

limk→∞ T k
µ Ĵ , so Jµ = Ĵ . Q.E.D.

Note that there may exist an improper policy µ that is strictly sub-
optimal and yet satisfies the optimality condition TµJ* = TJ* [cf. case (c)
of Example 4.4.1], so properness of µ is an essential assumption in Prop.
4.4.2(c). The following proposition shows that starting from any J ≥ Ĵ ,
the convergence rate of VI to Ĵ is linear. The proposition also provides a
corresponding error bound.

Proposition 4.4.3: (Convergence Rate of VI) Assume the weak
shortest path conditions, and let µ̂ be a proper policy that is optimal
within the class of proper policies, i.e., Jµ̂ = Ĵ [cf. Prop. 4.4.1(d)].
Then

∥

∥TJ − Ĵ‖v ≤ β‖J − Ĵ‖v, ∀ J ≥ Ĵ , (4.62)



280 Noncontractive Total Cost Problems Chap. 4

where ‖ · ‖v is a weighted sup-norm with respect to which Tµ̂ is a con-
traction and β is the corresponding modulus of contraction. Moreover
we have

‖J − Ĵ‖v ≤ 1

1− β
max

i=1,...,n

J(i)− (TJ)(i)

v(i)
, ∀ J ≥ Ĵ . (4.63)

Proof: By using the optimality of µ̂ and Prop. 4.4.2, we have Tµ̂Ĵ = T Ĵ =

Ĵ , so for all states i and J ≥ Ĵ ,

(TJ)(i)− Ĵ(i)

v(i)
≤ (Tµ̂J)(i)− (Tµ̂Ĵ)(i)

v(i)
≤ β max

i=1,...,n

J(i)− Ĵ(i)

v(i)
.

By taking the maximum of the left-hand side over i, and by using the fact
that the inequality J ≥ Ĵ implies that TJ ≥ T Ĵ = Ĵ , we obtain Eq. (4.62).

By using again the relation Tµ̂Ĵ = T Ĵ = Ĵ , we have for all states i

and all J ≥ Ĵ ,

J(i)− Ĵ(i)

v(i)
=

J(i)− (TJ)(i)

v(i)
+

(TJ)(i)− Ĵ(i)

v(i)

≤ J(i)− (TJ)(i)

v(i)
+

(Tµ̂J)(i)− (Tµ̂Ĵ)(i)

v(i)

≤ J(i)− (TJ)(i)

v(i)
+ β‖J − Ĵ‖v.

By taking the maximum of both sides over i, and by using the inequality
J ≥ Ĵ , we obtain Eq. (4.63). Q.E.D.

Note that if there exists a proper policy but J* is not real-valued, the
mapping T cannot have any real-valued fixed point. To see this, assume to
arrive at a contradiction that J̃ is a real-valued fixed point, and let ǫ be a
scalar such that J̃ ≤ J0 + ǫe, where J0 is the zero vector. Since

T (J0 + ǫe) ≤ TJ0 + ǫe,

it follows that

J̃ = TN J̃ ≤ TN(J0 + ǫe) ≤ TNJ0 + ǫe ≤ Jπ,N + ǫe

for any N and policy π. Taking lim sup with respect to N and then min-
imum over π, it follows that J̃ ≤ J* + ǫe. Hence J*(i) cannot take the
value −∞ for any state i. Since J*(i) also cannot take the value ∞ (by
the existence of a proper policy), this shows that J* must be real-valued -
a contradiction.
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The Case Where Ĵ ≤ 0

Another important special case where favorable results hold is when g(i, u) ≤
0 for all (i, u). Then from the analysis of Section 4.1, we know that J* is
the unique fixed point of T within the set {J | J* ≤ J ≤ 0}, and the VI
sequence {T kJ} converges to J* starting from any J within that set. In
the following proposition, we will use Prop. 4.4.2 to obtain related results
for SSP problems where g may take both positive and negative values. An
example is an optimal stopping problem, where at each state i we have cost
g(i, u) ≥ 0 for all u except one that leads to the termination state t with
nonpositive cost. Classical problems of this type include searching among
several sites for a valuable object, with nonnegative search costs and non-
positive stopping costs (stopping the search at every site is a proper policy
guaranteeing that Ĵ ≤ 0).

Proposition 4.4.4: Assume that Ĵ ≤ 0, and that J* is real-valued.
Then J* is equal to Ĵ and it is the unique fixed point of T within
the set {J ∈ ℜn | J ≥ J*}. Moreover, we have T kJ → J* for every
J ∈ ℜn with J ≥ J*.

Proof: We first observe that the hypothesis Ĵ ≤ 0 implies that there exists
at least one proper policy, so the weak shortest path conditions hold. Thus
Prop. 4.4.2 applies, and shows that Ĵ is the unique fixed point of T within
the set {J ∈ ℜn | J ≥ Ĵ} and that T kJ → Ĵ for all J ∈ ℜn with J ≥ Ĵ .
We will prove the result by showing that Ĵ = J*. Since generically we have
Ĵ ≥ J*, it will suffice to show the reverse inequality.

Let J0 denote the zero function. Since Ĵ is a fixed point of T and
Ĵ ≤ J0, we have

Ĵ = lim
k→∞

T kĴ ≤ lim sup
k→∞

T kJ0. (4.64)

Also, for each policy π = {µ0, µ1, . . .}, we have

Jπ = lim sup
k→∞

Tµ0 · · ·Tµk−1
J0.

Since
T kJ0 ≤ Tµ0 · · ·Tµk−1

J0, ∀ k ≥ 0,

it follows that lim supk→∞ T kJ0 ≤ Jπ, so by taking the minimum over π,
we have

lim sup
k→∞

T kJ0 ≤ J*. (4.65)

Combining Eqs. (4.64) and (4.65), it follows that Ĵ ≤ J*, so that Ĵ = J*.
Q.E.D.
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Finally, let us address the question of finding a function J ≥ Ĵ with
which to start VI. One possibility that may work is to use the cost function
of a proper policy or an upper bound thereof. For example in a stopping
problem we may use the cost function of the policy that stops at every
state. More generally we may try to introduce an artificial high stopping
cost, which was our approach in Section 4.1.4. If it can be guaranteed that
Ĵ = J* this approach will also yield J*.

4.4.2 A Policy Iteration Algorithm with Perturbations

We will now use our perturbation framework to deal with the oscillatory
behavior of PI, which is illustrated in case (d) of Example 4.4.1. We will
develop a perturbed version of the PI algorithm that generates a sequence
of proper policies {µk} such that Jµk → Ĵ , under the assumptions of Prop.
4.4.2, which include the existence of a proper policy and that J* is real-
valued. The algorithm generates the sequence {µk} as follows.

Let {δk} be a positive sequence with δk ↓ 0, and let µ0 be any proper
policy. At iteration k, we have a proper policy µk, and we generate µk+1

according to

Tµk+1Jµk,δk
= TJµk,δk

. (4.66)

Note that since µk is proper, Jµk ,δk
is the unique fixed point of the mapping

Tµk,δk
given by

Tµk,δk
J = TµkJ + δke.

The policy µk+1 of Eq. (4.66) exists by the finiteness of the control space.
We claim that µk+1 is proper. To see this, note that

Tµk+1,δk
Jµk,δk

= TJµk,δk
+ δk e ≤ TµkJµk,δk

+ δk e = Jµk,δk
,

so that

Tm
µk+1,δk

Jµk ,δk
≤ Tµk+1,δk

Jµk,δk
= TJµk,δk

+ δk e ≤ Jµk ,δk
, ∀ m ≥ 1.

(4.67)
Since Jµk ,δk

forms an upper bound to Tm
µk+1,δk

Jµk ,δk
, it follows that µk+1

is proper [if it were improper, we would have (Tm
µk+1,δk

Jµk ,δk
)(i) → ∞ for

some i; cf. Eq. (4.61)]. Thus the sequence {µk} generated by the perturbed
PI algorithm (4.66) is well-defined and consists of proper policies. We have
the following proposition.

Proposition 4.4.5: Assume the weak shortest path conditions. Then
the sequence {Jµk} generated by the perturbed PI algorithm (4.66)

satisfies Jµk → Ĵ .
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Proof: Using Eq. (4.67), we have

Jµk+1,δk+1
≤ Jµk+1,δk

= lim
m→∞

Tm
µk+1,δk

Jµk ,δk
≤ TJµk,δk

+ δk e ≤ Jµk,δk
,

where the equality holds because µk+1 is proper, as shown earlier. Taking
the limit as k → ∞, and noting that Jµk+1,δk+1

≥ Ĵ , we see that Jµk,δk
↓ J+

for some J+ ≥ Ĵ , and we obtain

Ĵ ≤ J+ = lim
k→∞

TJµk,δk
. (4.68)

We also have

min
u∈U(i)

H(i, u, J+) ≤ lim
k→∞

min
u∈U(i)

H(i, u, Jµk,δk
)

≤ min
u∈U(i)

lim
k→∞

H(i, u, Jµk,δk
)

= min
u∈U(i)

H(i, u, lim
k→∞

Jµk,δk
)

= min
u∈U(i)

H(i, u, J+),

where the first inequality follows from the fact J+ ≤ Jµk,δk
, which implies

that H(i, u, J+) ≤ H(i, u, Jµk,δk
), and the first equality follows from the

continuity of H(i, u, ·). Thus equality holds throughout above, so that

lim
k→∞

TJµk,δk
= TJ+. (4.69)

Combining Eqs. (4.68) and (4.69), we obtain Ĵ ≤ J+ = TJ+. Since by
Prop. 4.4.2, Ĵ is the unique fixed point of T within {J ∈ ℜn | J ≥ Ĵ}, it
follows that J+ = Ĵ . Thus Jµk,δk

↓ Ĵ , and since Jµk ,δk
≥ Jµk ≥ Ĵ , we

have Jµk → Ĵ . Q.E.D.

Proposition 4.4.5 guarantees the monotonic convergence Jµk ,δk
↓ Ĵ

(see the preceding proof) and the (possibly nonmonotonic) convergence
Jµk → Ĵ . Moreover, Prop. 4.4.5 implies that the generated policies µk

will be optimal for all k sufficiently large. The reason is that the set of
policies is finite and there exists a sufficiently small ǫ > 0, such that for
all nonoptimal µ there is some state i such that Jµ(i) ≥ J*(i) + ǫ. This
convergence behavior should be contrasted with the behavior of PI without
perturbations, which may lead to difficulties, as noted earlier [cf. case (d)
of Example 4.4.1].

4.4.3 Solution by Linear Programming

We will finally provide a method to obtain Ĵ by solving a linear program-
ming problem. It is based on the following proposition.
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Proposition 4.4.6: Under the weak shortest path conditions, if a
vector J ∈ ℜn satisfies J ≤ TJ , it also satisfies J ≤ Ĵ .

Proof: Let J ≤ TJ and δ > 0. We have J ≤ TJ + δe = TδJ , and
hence J ≤ T k

δ J for all k. Since the infinite cost conditions hold for the
δ-perturbed problem, it follows that T k

δ J → J*
δ , so J ≤ J*

δ . By taking

δ ↓ 0 and using Prop. 4.4.1(c), it follows that J ≤ Ĵ . Q.E.D.

From the preceding proposition, it follows that Ĵ(1), . . . , Ĵ(n) is the
unique solution of the linear programming problem (in z1, . . . , zn):

maximize
n
∑

i=1

βizi

subject to zi ≤ g(i, u) +

n
∑

j=1

pij(u)zj, i = 1, . . . , n, u ∈ U(i),

(4.70)

where β1, . . . , βn are any positive scalars. This is essentially the same
problem as the one noted in Chapter 3 under the infinite cost conditions,
but it does not yield J* when J* 6= Ĵ .

4.5 AFFINE MONOTONIC AND RISK-SENSITIVE MODELS

In this section we discuss a broad class of DP models, called affine mono-
tonic, which are in some ways similar to the abstract models of Sections
1.6 and 2.5. The main difference is that instead of involving a contractive
mapping, they involve an affine mapping that is monotone but may not be
contractive. Affine monotonic models are also similar to the SSP models
of Chapter 3 and Section 4.4. The main similarity is that in both models,
there is a special class of policies, which is well-behaved with respect to VI
and plays a critical role: in SSP, it is the class of proper policies, while in
affine monotonic, it is the class of contractive policies, which are the policies
whose affine mapping is a contraction; see the subsequent definition.

At an abstract mathematical level, SSP and affine monotonic models
are very similar. We assume a finite state space X = {1, . . . , n}, and a
control constraint set U(i) ⊂ U for each state i. We replace the SSP
mapping H of Eq. (4.59) with

H(i, u, J) = b(i, u) +

n
∑

j=1

Aij(u)J(j),

where b(i, u) and Aij(u) are given scalars, with

b(i, u) ≥ 0, Aij(u) ≥ 0, ∀ i, j = 1, . . . , n, u ∈ U(i). (4.71)
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Thus b(i, u) replaces the cost per stage g(i, u) and Aij(u) replaces the
transition probability pij(u). The Bellman equation in affine monotonic
models has the form

J(i) = min
u∈U(i)

H(i, u, J) = min
u∈U(i)



b(i, u) +

n
∑

j=1

Aij(u)J(j)



 , j = 1, . . . , n.

(4.72)
We are interested in solutions of Bellman’s equation (4.72) within the

set of vectors with nonnegative extended real-valued components, which
we denote by

En
+ =

{

J | 0 ≤ J(i) ≤ ∞, i = 1, . . . , n
}

.

We will also focus on solutions of Bellman’s equation within ℜn
+, the set of

vectors with nonnegative real-valued components,

ℜn
+ =

{

J | 0 ≤ J(i) < ∞, i = 1, . . . , n
}

.

As earlier, we denote by M the set of all functions µ : X 7→ U with
µ(i) ∈ U(i), for all i ∈ X , and we consider policies, which are sequences
π = {µ0, µ1, . . .}, with µk ∈ M for all k. We denote by Π the set of all
policies. Moreover, we also refer to any µ ∈ M as a “policy” and use it in
place of the stationary policy {µ, µ, . . .}, when confusion cannot arise.

To formulate the DP model that corresponds to the Bellman equation
(4.72), we introduce for each µ ∈ M the mapping Tµ : En

+ 7→ En
+ given by

TµJ = bµ +AµJ, (4.73)

where bµ is the vector of ℜn with components b
(

i, µ(i)
)

, i = 1, . . . , n, and

Aµ is the n× n matrix with components Aij

(

µ(i)
)

, i, j = 1, . . . , n.
We define the mapping T : En

+ 7→ En
+, where for each J ∈ En

+, TJ is
the vector of En

+ with components

(TJ)(i) = min
µ∈M

(TµJ)(i), i = 1, . . . , n,

where M is the set of stationary policies, or equivalently,

(TJ)(i) = min
u∈U(i)



b(i, u) +

n
∑

j=1

Aij(u)J(j)



 , i = 1, . . . , n. (4.74)

We now define a DP-like optimization problem that involves the map-
pings Tµ. We introduce a special vector J̄ ∈ ℜn

+, and we define the cost
function of a policy π = {µ0, µ1, . . .} by

Jπ(i) = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄)(i), i = 1, . . . , n.
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(We use lim sup because we are not assured that the limit exists; the anal-
ysis remains unchanged if lim sup is replaced by lim inf.) This definition
bears similarity with the one of Section 1.6.1 for contractive abstract DP
models, except that in the latter definition the choice of J̄ is largely imma-
terial thanks to the contraction property. The optimal cost function J* is
defined by

J*(i) = min
π∈Π

Jπ(i), i = 1, . . . , n,

where Π denotes the set of all policies. We wish to find J* and a policy
π∗ ∈ Π that is optimal, i.e., Jπ∗ = J*.

The preceding affine monotonic optimization problem was introduced
in the monograph [Ber18], Section 4.5, as a special class of abstract DP
models with a broad variety of applications. The development of [Ber18]
involves arbitrary state and control spaces, but similar to SSP problems,
the strongest results are the ones obtained for the finite state space case
of this section. Even stronger results can be obtained in the special cases
where the additional assumption that TµJ̄ ≥ J̄ for all policies µ ∈ M or
the additional assumption that TµJ̄ ≤ J̄ for all policies µ ∈ M. These are
the so called monotone increasing and monotone decreasing cases (see the
exercises and [Ber18]).†

Clearly, finite-state sequential stochastic control problems under As-
sumption P, and SSP problems with nonnegative cost per stage (cf. Chapter
3, and Sections 4.1, 4.4) are special cases of affine monotonic models where
J̄ is the identically zero function [J̄(i) ≡ 0]. Also, variants of the stochastic
control problem of Section 4.1 under Assumption P, which involve state
and control-dependent discount factors (for example semi-Markov prob-
lems, cf. Section 5.6 of Vol. I), are special cases of the affine monotonic
model, with the discount factors being absorbed within the scalars Aij(u).
In all of these cases, Aµ is a substochastic matrix. There are also other
special cases, where Aµ is not substochastic. They correspond to interest-
ing classes of practical problems, including SSP-type problems involving a
multiplicative or an exponential (rather than additive) cost function, which
we proceed to discuss.

Multiplicative and Exponential Cost SSP Problems

To describe a type of SSP problem, which is different than the one con-
sidered in Chapter 3 and Section 4.4, let us introduce in addition to the

† An alternative affine monotonic model that we will not consider in this
section is obtained when instead of Eq. (4.71), we have

b(i, u) ≤ 0, Aij(u) ≥ 0, ∀ i, j = 1, . . . , n, u ∈ U(i),

so that Tµ maps functions in En
− [the space of functions J : X 7→ [−∞, 0]] into

itself, and J̄ ∈ En
−.
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states i = 1, . . . , n, a cost-free and absorbing state t. As in SSP, there
are probabilistic state transitions among the states i = 1, . . . , n, up to the
first time a transition to state t occurs, in which case the state transitions
terminate. We denote by pit(u) and pij(u) the probabilities of transition
from i to t and to j under u, respectively, so that

pit(u) +

n
∑

j=1

pij(u) = 1, i = 1, . . . , n, u ∈ U(i).

Then we introduce nonnegative scalars h(i, u, t) and h(i, u, j),

h(i, u, t) ≥ 0, h(i, u, j) ≥ 0, ∀ i, j = 1, . . . , n, u ∈ U(i),

and we consider the affine monotonic problem where the scalars Aij(u) and
b(i, u) are defined by

Aij(u) = pij(u)h(i, u, j), i, j = 1, . . . , n, u ∈ U(i), (4.75)

and
b(i, u) = pit(u)h(i, u, t), i = 1, . . . , n, u ∈ U(i), (4.76)

and the vector J̄ is the unit vector,

J̄(i) = 1, i = 1, . . . , n.

The cost function of this problem has a multiplicative character as we show
next.

Indeed, with the preceding definitions of Aij(u), b(i, u), and J̄ , we will
prove that the expression for the cost function of a policy π = {µ0, µ1, . . .},

Jπ = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄),

can be written in the multiplicative form

Jπ(x0) = lim sup
N→∞

E

{

N−1
∏

k=0

h
(

xk, µk(xk), xk+1

)

}

, x0 = 1, . . . , n,

(4.77)
where:

(a) {x0, x1, . . .} is the random state trajectory generated starting from
x0, using π.

(b) The expected value is with respect to the probability distribution of
that trajectory.

(c) We use the notation

h
(

xk, µk(xk), xk+1

)

= 1, if xk = xk+1 = t,
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(so that the multiplicative cost accumulation stops once the state
reaches t).

Thus, we claim that Jπ(x0) can be viewed as the expected value of cost ac-
cumulated multiplicatively, starting from x0 up to reaching the termination
state t (or indefinitely accumulated multiplicatively, if t is never reached).

To verify the formula (4.77) for Jπ, we use the definition

TµJ = bµ +AµJ,

to show by induction that for every π = {µ0, µ1, . . .}, we have

Tµ0 · · ·TµN−1 J̄ = Aµ0 · · ·AµN−1 J̄ + bµ0 +

N−1
∑

k=1

Aµ0 · · ·Aµk−1
bµk

. (4.78)

We then interpret the ith component of each term in the sum as a condi-
tional expected value of the expression

N−1
∏

k=0

h
(

xk, µk(xk), xk+1

)

(4.79)

multiplied with the appropriate conditional probability. In particular:

(a) The ith component of the term Aµ0 · · ·AµN−1 J̄ in Eq. (4.78) is the
conditional expected value of the expression (4.79), given that x0 = i
and xN 6= t, multiplied with the conditional probability that xN 6= t,
given that x0 = i.

(b) The ith component of the term bµ0 in Eq. (4.78) is the conditional
expected value of the expression (4.79), given that x0 = i and x1 = t,
multiplied with the conditional probability that x1 = t, given that
x0 = i.

(c) The ith component of the term Aµ0 · · ·Aµk−1
bµk

in Eq. (4.78) is the
conditional expected value of the expression (4.79), given that x0 = i,
x1, . . . , xk−1 6= t, and xk = t, multiplied with the conditional proba-
bility that x1, . . . , xk−1 6= t, and xk = t, given that x0 = i.

By adding these conditional probability expressions, we obtain the ith com-
ponent of the unconditional expected value

E

{

N−1
∏

k=0

h
(

xk, µk(xk), xk+1

)

}

,

thus verifying the formula (4.77).
A special case of multiplicative SSP is the risk-sensitive SSP problem

with exponential cost function, where for all i = 1, . . . , n, and u ∈ U(i),

h(i, u, j) = exp
(

g(i, u, j)
)

, j = 1, . . . , n, t, (4.80)
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and the function g can take both positive and negative values. The Bellman
equation for this problem is

J(i) = min
u∈U(i)



pit(u)exp
(

g(i, u, t)
)

+

n
∑

j=1

pij(u)exp
(

g(i, u, j)
)

J(j)



 ,

(4.81)
for all i = 1, . . . , n. Based on Eq. (4.77), we have that Jπ(x0) is the limit
superior of expected value of the exponential of the N -step additive finite

horizon cost up to termination, i.e.,
∑k̄

k=0 g
(

xk, µk(xk), xk+1

)

, where k̄ is
equal to the first index prior to N such that xk̄+1 = t, or is equal to N − 1
if there is no such index. The use of the exponential here introduces risk
sensitivity, by assigning a far larger (nonlinear) penalty for large rather
than small cost of a trajectory up to termination.

The deterministic version of this problem where for each u ∈ U(i),
only one of the transition probabilities pit(u), pi1(u), . . . , pin(u) is equal to
1 and all others are equal to 0, is mathematically equivalent to the classical
deterministic shortest path problem (since minimizing the exponential of a
deterministic expression is equivalent to minimizing that expression). Some
of the deterministic shortest path examples given earlier in this chapter to
illustrate various pathological situations, such as multiplicity of fixed points
of T , and failures of the VI and PI algorithms, can be translated to examples
within the context of the risk-sensitive SSP problem with exponential cost
(see the subsequent Example 4.5.1).

Contractive Policies

The subsequent analysis of this section has much in common with the
analysis of SSP problems under the assumptions of Chapter 3 and under
the weaker assumptions of Section 4.4. The key is a generalization of the
fundamental notion of a proper policy within the affine monotonic model,
which we introduce next.

We say that a given stationary policy µ is contractive if AN
µ → 0

as N → ∞. Equivalently, µ is contractive if all the eigenvalues of Aµ lie
strictly within the unit circle. Otherwise, µ is called noncontractive. As
noted in Section 1.5, a policy µ is contractive if and only if Tµ is a contrac-
tion with respect to some norm. Because Aµ ≥ 0, a stronger assertion can
be made: µ is contractive if and only if Aµ is a contraction with respect to
some weighted sup-norm (see the discussion in Section 1.5.1, and [BeT89],
Ch. 2, Cor. 6.2). We next derive an expression for the cost function of
contractive and noncontractive policies.

By repeatedly applying the equation TµJ = bµ +AµJ , we have

TN
µ J = AN

µ J +

N−1
∑

k=0

Ak
µbµ, ∀ J ∈ ℜn, N = 1, 2, . . . ,
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and hence

Jµ = lim sup
N→∞

TN
µ J̄ = lim sup

N→∞
AN

µ J̄ +

∞
∑

k=0

Ak
µbµ. (4.82)

From these expressions, it follows that if µ is contractive, the initial function
J̄ in the definition of Jµ does not matter, and we have

Jµ = lim sup
N→∞

TN
µ J = lim sup

N→∞

N−1
∑

k=0

Ak
µbµ, ∀ µ: contractive, J ∈ ℜn.

Moreover, since for a contractive µ, Tµ is a contraction with respect to
some norm, the lim sup above can be replaced by lim, so that

Jµ =

∞
∑

k=0

Ak
µbµ = (I −Aµ)−1bµ, ∀ µ: contractive. (4.83)

Thus if µ is contractive, Jµ is real-valued as well as nonnegative. If µ is
noncontractive, we have Jµ ∈ En

+ and it is possible that for some states i,
Jµ(i) = ∞. Note the analogy of proper and improper policies in SSP with
contractive and noncontractive policies in the affine monotonic context. In
our analysis we will assume the following, which parallels Assumption 3.1.1
for SSP.

Assumption 4.5.1: There exists at least one contractive policy.

Control Space Compactness

In our analysis of SSP in Chapter 3 and Section 4.4, we assumed that
the control space is finite, although we noted in Section 3.2 that our basic
results extend to the case of a compact control constraint set (assuming
continuity of the cost per stage and the transition probabilities with respect
to u). However, this extension requires a complicated proof for which we
referred to [Ber91a]. It turns out that in the case of an affine monotonic
model, the analysis is facilitated by the nonnegativity of the cost per stage,
and the attendant lower boundedness of the optimal cost function. We
will thus be able to give relatively simple proofs of our basic results while
allowing an infinite control space, under the following assumption.
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Assumption 4.5.2: (Compactness) The control space U is a metric
space, and pij(·) and b(i, ·) are continuous functions of u over U(i), for
all i and j. Moreover, for each state i, the sets







u ∈ U(i)
∣

∣

∣ b(i, u) +

n
∑

j=1

Aij(u)J(j) ≤ λ







are compact subsets of U for all scalars λ ∈ ℜ and J ∈ ℜn
+.

Note that the preceding assumption is satisfied if the control space U
is finite. One way to see this is to simply identify each u ∈ U with a distinct
integer from the real line. Another interesting case where the assumption
is satisfied is when for all i, U(i) is a compact subset of the metric space
U , and the functions b(i, ·) and Aij(·) are continuous functions of u over
U(i) (cf. Assumption 3.2.1 in Section 3.2).

An advantage of allowing U(i) to be infinite and compact is that it
allows randomized policies for problems where there is a finite set of feasi-
ble actions at each state i, call it C(i). We may then specify U(i) to be the
set of all probability distributions over C(i), which is a compact subset of
a Euclidean space. In this way, our results apply to finite-state and finite-
action problems where randomization is allowed, and J* is the optimal
cost function over all randomized nonstationary policies. Note, however,
that the optimal cost function may change when randomized policies are
introduced in this way. Basically, for our purposes, optimization over non-
randomized and over randomized policies over finite action sets C(i) are
two different problems, both of which are interesting and can be addressed
with the methodology of this section. However, when the sets C(i) are
infinite, a different and mathematically more sophisticated framework is
required in order to allow randomized nonstationary Markov policies. The
reason is that randomized policies over the infinite action sets C(i) must
obey measurability restrictions, such as universal measurability, and a re-
lated mathematical formulation and analysis (see Appendix A).

Similar to earlier sections, the preceding compactness assumption
guarantees some important properties of the mapping T . These are sum-
marized in the following proposition, which bears a close relation to the
results on convergence of VI under Assumption P (Props. 4.1.7 and 4.1.8).

Proposition 4.5.1: Let Assumptions 4.5.1 and 4.5.2 hold.

(a) The set of u ∈ U(i) that minimize the expression
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min
u∈U(i)



b(i, u) +

n
∑

j=1

Aij(u)J(j)



 , (4.84)

is nonempty and compact for all J ∈ ℜn
+ and i = 1, . . . , n.

(b) Let J0 be the zero vector in ℜn [J0(i) ≡ 0]. The VI sequence
{T kJ0} is monotonically nondecreasing and converges to a limit
J̃ ∈ ℜn

+ that satisfies J̃ ≤ J* and J̃ = T J̃ .

Proof: (a) The set of u ∈ U(i) that minimize the expression in Eq. (4.84)
is the intersection ∩∞

m=1Um of the nested sequence of sets

Um =







u ∈ U(i)
∣

∣

∣ b(i, u) +

n
∑

j=1

Aij(u)J(j) ≤ λm







, m = 1, 2, . . . ,

where {λm} is a monotonically decreasing scalar sequence such that

λm ↓ min
u∈U(i)



b(i, u) +

n
∑

j=1

Aij(u)J(j)



 .

Each set Um is nonempty, and by Assumption 4.5.2, it is compact, so the
intersection is nonempty and compact (cf. the discussion preceding Prop.
4.1.8).

(b) By the nonnegativity of b(i, u) and Aij(u), we have J0 ≤ TJ0, which by
the monotonicity of T implies that {T kJ0} is monotonically nondecreasing
to a limit J̃ ∈ En

+, and we have

J0 ≤ TJ0 ≤ · · · ≤ T kJ0 ≤ · · · ≤ J̃ . (4.85)

For all policies π = {µ0, µ1, . . .}, we have

T kJ0 ≤ T kJ̄ ≤ Tµ0 · · ·Tµk−1
J̄ ,

so by taking the limit as k → ∞, we obtain J̃ ≤ Jπ, and by taking the
minimum over π, it follows that J̃ ≤ J*. By Assumption 4.5.1, there exists
at least one contractive policy µ, for which Jµ is real-valued [cf. Eq. (4.83)],
so J* ∈ ℜn

+. It follows that the VI sequence {T kJ0} consists of vectors in
ℜn

+.
By applying T to both sides of Eq. (4.85), we obtain

(T k+1J0)(i) = min
u∈U(i)



b(i, u) +

n
∑

j=1

Aij(u)(T kJ0)(j)



 ≤ (T J̃)(i),
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and by taking the limit as k → ∞, it follows that J̃ ≤ T J̃. Assume to
arrive at a contradiction that there exists a state ĩ such that

J̃ (̃i) < (T J̃)(̃i). (4.86)

Consider the sets

Uk(̃i) =







u ∈ U (̃i)
∣

∣

∣ b(̃i, u) +

n
∑

j=1

Aĩj(u)(T
kJ0)(j) ≤ J̃ (̃i)







,

for k ≥ 0. It follows by Assumption 4.5.2 and Eq. (4.85) that
{

Uk(̃i)
}

is
a nested sequence of compact sets. Let also uk be a control attaining the
minimum in

min
u∈U (̃i)



b(̃i, u) +

n
∑

j=1

Aĩj(u)(T
kJ0)(j)



 ;

[such a control exists by part (a)]. From Eq. (4.85), it follows that for all
m ≥ k,

b(̃i, um)+

n
∑

j=1

Aĩj(um)(T kJ0)(j) ≤ b(̃i, um)+

n
∑

j=1

Aĩj(um)(TmJ0)(j) ≤ J̃ (̃i).

Therefore {um}∞m=k ⊂ Uk(̃i), and since Uk (̃i) is compact, all the limit
points of {um}∞m=k belong to Uk(̃i) and at least one such limit point exists.
Hence the same is true of the limit points of the entire sequence {um}∞m=0.
It follows that if ũ is a limit point of {um}∞m=0 then

ũ ∈ ∩∞
k=0Uk(̃i).

This implies that for all k ≥ 0

(T k+1J0)(̃i) ≤ b(̃i, ũ) +
n
∑

j=1

A
ij
(ũ)(T kJ0)(j) ≤ J̃ (̃i).

By taking the limit in this relation as k → ∞, we obtain

J̃ (̃i) = b(̃i, ũ) +

n
∑

j=1

Aij(ũ)J̃(j).

Since the right-hand side is greater than or equal to (T J̃)(̃i), Eq. (4.86) is
contradicted, implying that J̃ = T J̃ . Q.E.D.
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4.5.1 Case of Infinite Cost Noncontractive Policies

We now turn to questions relating to Bellman’s equation, VI convergence,
and optimality conditions, similar to the ones we have addressed for SSP
problems. The mappings Tµ are similar in the SSP and affine monotonic
cases, but there are two mathematical differences that affect the analysis,
and play a significant role in the subsequent proofs.

(a) In SSP problems, the vector bµ can have negative components, so for
some initial states the optimal cost may be −∞.

(b) In affine monotonic problems, Aµ need not be nonexpansive, so for
some J ∈ ℜn

+, A
N
µ J may become unbounded as N → ∞.

We will consider the following assumption, which parallels Assumption
3.1.2 in Section 3.1 for SSP.

Assumption 4.5.3: (Infinite Cost Condition) For every noncon-
tractive policy µ, there is at least one state such that the corresponding
component of the vector

∑∞
k=0 A

k
µbµ is equal to ∞.

Note that the preceding assumption guarantees that for every non-
contractive policy µ, we have Jµ(i) = ∞ for at least one state i [cf. Eq.
(4.82)]. The reverse is not true, however: Jµ(i) = ∞ does not imply that
the ith component of

∑∞
k=0 A

k
µbµ is equal to ∞, since there is the possi-

bility that AN
µ J̄ may become unbounded as N → ∞ [cf. Eq. (4.82)]. This

is a difference from Chapter 3 for SSP, where Assumption 3.1.2 requires
that for every improper policy µ, we have Jµ(i) = ∞ for at least one state
i. However, in the SSP context,

∑∞
k=0 A

k
µbµ has an infinite component if

and only if Jµ does, so the Assumption 4.5.3, when specialized to the SSP
problem of Chapter 3, becomes identical to the Assumption 3.1.2 in Section
3.1. More generally, if Aµ is a nonexpansive mapping with respect to some
norm,

∑∞
k=0 A

k
µbµ has an infinite component if and only if Jµ does, and

Assumption 4.5.3 can be accordingly restated.
Under Assumptions 4.5.1-4.5.3, we will derive results that closely par-

allel the ones for SSP in Chapter 3. We have the following characterization
of contractive policies, which parallels Prop. 3.2.1 for proper policies.

Proposition 4.5.2: (Properties of Contractive Policies) Let
Assumption 4.5.3 hold.

(a) For a contractive policy µ, the associated cost vector Jµ satisfies
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lim
k→∞

(T k
µJ)(i) = Jµ(i), i = 1, . . . , n,

for every vector J ∈ ℜn. Furthermore,

Jµ = TµJµ,

and Jµ is the unique solution of this equation within ℜn.

(b) A stationary policy µ is contractive if and only if it satisfies
J ≥ TµJ for some vector J ∈ ℜn

+.

Proof: (a) Follows from Eqs. (4.78) and (4.83).

(b) If µ is contractive, by part (a) we have J ≥ TµJ for J = Jµ ∈ ℜn
+.

Conversely, let J be a vector in ℜn
+ with J ≥ TµJ , and assume to arrive

at a contradiction that µ is noncontractive. Then the monotonicity of Tµ

and Eq. (4.78) imply that

J ≥ TN
µ J = AN

µ J +

N−1
∑

k=0

Ak
µbµ, N = 1, 2, . . . .

Since µ is noncontractive, by Assumption 4.5.3, some component of

N−1
∑

k=0

Ak
µbµ

diverges to ∞ as N → ∞, while AN
µ J ≥ 0, which contradicts the preceding

relation. Q.E.D.

The following proposition parallels Prop. 3.2.2, the main result of
Chapter 3 for SSP. Under Assumption 4.5.3, it shows existence and unique-
ness of the solution of Bellman’s equation within ℜn

+. In addition to the
fixed point property of J* and the convergence of the VI sequence {T kJ}
to J* starting from any J ∈ ℜn

+, it shows the validity of the PI algorithm.
The proof of the proposition bears similarity to the one of Prop. 3.2.2 (with
contractive policies replacing proper policies), and relies on Prop. 4.5.2 in
the same way that the proof of Prop. 3.2.2 relies on Prop. 3.2.1.

The infinite cost Assumption 4.5.3 is essential for the proposition to
hold; for example if minµ bµ = 0, Bellman’s equation always has the zero
vector as a solution, and there may be other solutions as well (see the
subsequent Example 4.5.1). However, we will provide later a perturbation-
based analysis and related results, similar to the one of Section 4.4, which
will require just the existence of at least one contractive policy, and will deal
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with the case where some noncontractive policies have finite cost starting
from every state.

Proposition 4.5.3: (Bellman’s Equation and Optimality Con-
ditions) Let Assumptions 4.5.1, 4.5.2, and 4.5.3 hold.

(a) The optimal cost vector J* satisfies the Bellman equation J =
TJ . Moreover, J* is the unique solution of this equation within
ℜn

+.

(b) Starting with any contractive policy µ0, the sequence {µk} gen-
erated by the PI algorithm consists of contractive policies, and
any limit point of this sequence is a contractive optimal policy.

(c) We have

lim
k→∞

(T kJ)(i) = J*(i), i = 1, . . . , n,

for every vector J ∈ ℜn
+.

(d) A stationary policy µ is optimal if and only if TµJ* = TJ*.More-
over there exists an optimal stationary policy, and all optimal
stationary policies are contractive.

(e) For a vector J ∈ ℜn
+, if J ≤ TJ then J ≤ J*, and if J ≥ TJ

then J ≥ J*.

Proof: (a), (b) From Prop. 4.5.1(b), T has as fixed point the vector J̃ ,
the limit of the sequence {T kJ0}, where J0 is the identically zero vector
[J0(i) ≡ 0]. We know that J̃ ∈ ℜn

+, and we will show that it is the unique
fixed point of T within ℜn

+. Indeed, if J and J ′ are two fixed points, then
we select µ and µ′ such that J = TJ = TµJ and J ′ = TJ ′ = Tµ′J ′; this is
possible because of Prop. 4.5.1(a). By Prop. 4.5.2(b), we have that µ and
µ′ are contractive, and Prop. 4.5.2(a) implies that J = Jµ and J ′ = Jµ′ .
We also have J = T kJ ≤ T k

µ′J for all k ≥ 1, and by Prop. 4.5.2(a), we

obtain J ≤ limk→∞ T k
µ′J = Jµ′ = J ′. Similarly, J ′ ≤ J , showing that

J = J ′. Thus T has J̃ as its unique fixed point within ℜn
+.

We next turn to the PI algorithm. Let µ be a contractive policy (there
exists one by Assumption 2.1). Choose µ′ such that

Tµ′Jµ = TJµ.

Then we have Jµ = TµJµ ≥ Tµ′Jµ. By Prop. 4.5.2(b), µ′ is contractive,
and using the monotonicity of Tµ′ and Prop. 4.5.2(a), we obtain

Jµ ≥ lim
k→∞

T k
µ′Jµ = Jµ′ . (4.87)
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Continuing in the same manner, we construct a sequence {µk} such that
each µk is contractive and

Jµk ≥ Tµk+1Jµk = TJµk ≥ Jµk+1 , k = 0, 1, . . . (4.88)

The sequence {Jµk} is real-valued, nonincreasing, and nonnegative so it
converges to some J∞ ∈ ℜn

+.
We claim that the sequence of vectors µk =

(

µk(1), . . . , µk(n)
)

has a

limit point
(

µ(1), . . . , µ(n)
)

, with µ being a feasible policy. Indeed, using
Eq. (4.88) and the fact J∞ ≤ Jµk−1 , we have for all k = 1, 2, . . . ,

TµkJ∞ ≤ TµkJµk−1 = TJµk−1 ≤ Tµk−1Jµk−1 = Jµk−1 ≤ Jµ0 ,

so µk(i) belongs to the set

Û(i) =







u ∈ U(i)
∣

∣

∣ b(i, u) +

n
∑

j=1

Aij(u)J∞(j) ≤ Jµ0(i)







,

which is compact by Assumption 4.5.2. Hence the sequence {µk} belongs
to the compact set Û(1)× · · · × Û(n), and has a limit point µ, which is a
feasible policy. In what follows, without loss of generality, we assume that
the entire sequence {µk} converges to µ.

Since Jµk ↓ J∞ ∈ ℜn
+ and µk → µ, by taking limit as k → ∞ in

Eq. (4.88), and using the continuity part of Assumption 4.5.2, we obtain
J∞ = TµJ∞. It follows from Prop. 4.5.2(b) that µ is contractive, and that
Jµ is equal to J∞. To show that Jµ is a fixed point of T , we note that from
the right side of Eq. (4.88), we have for all policies µ, TµJµk ≥ Jµk+1 , which
by taking limit as k → ∞ yields TµJµ ≥ Jµ. By taking minimum over µ,
we obtain TJµ ≥ Jµ. Combining this with the relation Jµ = TµJµ ≥ TJµ,

it follows that Jµ = TJµ. Thus Jµ is equal to the unique fixed point J̃ of
T within ℜn

+.
We will now show that Jµ is equal to the optimal cost vector J* (which

also implies the optimality of the policy µ, obtained from the PI algorithm
starting from a contractive policy). By Prop. 4.5.1(b), the sequence T kJ0
converges monotonically to J̃ , which is equal to Jµ. Also, for every policy
π = {µ0, µ1, . . .}, we have

T kJ0 ≤ T kJ̄ ≤ Tµ0 · · ·Tµk−1
J̄ , k = 0, 1, . . . ,

and by taking the limit as k → ∞, we obtain Jµ = J̃ = limk→∞ T kJ0 ≤ Jπ
for all π, showing that Jµ = J*. Thus J* is the unique fixed point of T
within ℜn

+, and µ is an optimal policy.

(c) From the preceding proof, we have that T kJ0 → J*, which implies that

lim
k→∞

T kJ = J*, ∀ J ∈ ℜn
+ with J ≤ J*. (4.89)
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Also, for any J ∈ ℜn
+ with J ≥ J*, we have

T k
µ
J ≥ T kJ ≥ T kJ* = J* = Jµ,

where µ is the contractive optimal policy obtained by PI in the proof of
part (b). By taking the limit as k → ∞ and using the fact T k

µ
J → Jµ

(which follows from the contractiveness of µ), we obtain

lim
k→∞

T kJ = J*, ∀ J ∈ ℜn
+ with J ≥ J*. (4.90)

Finally, given any J ∈ ℜn
+, we have from Eqs. (4.89) and (4.90),

lim
k→∞

T k
(

min{J, J*}
)

= J*, lim
k→∞

T k
(

max{J, J*}
)

= J*,

and since J lies between min{J, J*} and max{J, J*}, it follows that T kJ →
J*.

(d) If µ is optimal, then Jµ = J* and since by part (a) J* is real-valued, µ
is contractive. Therefore, by Prop. 4.5.2(a),

TµJ* = TµJµ = Jµ = J* = TJ*.

Conversely, if

J* = TJ* = TµJ*,

it follows from Prop. 4.5.2(b) that µ is contractive, and by using Prop.
4.5.2(a), we obtain J* = Jµ. Therefore µ is optimal. The existence of an
optimal policy follows from part (b).

(e) If J ∈ ℜn
+ and J ≤ TJ , by repeatedly applying T to both sides and

using the monotonicity of T , we obtain J ≤ T kJ for all k. Taking the limit
as k → ∞ and using the fact T kJ → J* [cf. part (c)], we obtain J ≤ J*.
The proof that J ≥ J* if J ≥ TJ is similar. Q.E.D.

Regarding computational methods, Prop. 4.5.3(b) has shown the va-
lidity of PI when starting from a contractive policy. There is also an asyn-
chronous version of the PI algorithm of Section 3.5.4, which involves asyn-
chronous iteration of costs and Q-factors, and does not require an initial
contractive policy.

Proposition 4.5.3(c) establishes the validity of the VI algorithm that
generates the sequence {T kJ}, starting from any initial J ∈ ℜn

+. An asyn-
chronous version of this algorithm is also valid, similar to the one of Section
3.4.2 for SSP. Its convergence can be proved similar to the SSP case, by
using the asynchronous convergence theorem (Prop. 2.6.1), and the mono-
tonicity of T ; see also Chapter 3 of [Ber18].
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4.5.2 Case of Finite Cost Noncontractive Policies

We will now eliminate Assumption 4.5.3, thus allowing noncontractive poli-
cies with real-valued cost functions. We will prove results that closely par-
allel the ones obtained for SSP under the weak assumptions of Section 4.4.
An important notion in this regard is the optimal cost that can be achieved
with contractive policies only, i.e., the vector Ĵ with components given by

Ĵ(i) = min
µ: contractive

Jµ(i), i = 1, . . . , n. (4.91)

This is similar to Section 4.4, but with contractive policies in place of proper
policies; cf. Eq. (4.60).

We will show that Ĵ is a solution of Bellman’s equation (the example
of Section 3.6.1 shows that J* is not necessarily a solution). To this end we
use the perturbation line of analysis of Section 4.4, by adding a constant
δ > 0 to all components of bµ, thus obtaining what we call the δ-perturbed
affine monotonic model (in analogy with the δ-perturbed SSP of Section
4.4). An important property of noncontractive policies in this regard is
given by the following proposition.

Proposition 4.5.4: If µ is a noncontractive policy and all the com-
ponents of bµ are strictly positive, then there exists at least one state
i such that the corresponding component of the vector

∑∞
k=0 A

k
µbµ is

∞.

Proof: According to the Perron-Frobenius Theorem, the nonnegative ma-
trix Aµ has a real eigenvalue λ, which is equal to its spectral radius, and
an associated nonnegative eigenvector ξ 6= 0 (see e.g., [BeT89], Chapter 2,
Prop. 6.6). Choose γ > 0 to be such that bµ ≥ γξ, so that

∞
∑

k=0

Ak
µbµ ≥ γ

∞
∑

k=0

Ak
µξ = γ

(

∞
∑

k=0

λk

)

ξ.

Since some component of ξ is positive while λ ≥ 1 (since µ is noncon-
tractive), the corresponding component of the infinite sum on the right is
infinite, and the same is true for the corresponding component of the vector
∑∞

k=0 A
k
µbµ on the left. Q.E.D.

We denote by Jµ,δ and J*
δ the cost function of µ and the optimal cost

function of the δ-perturbed model, respectively. Then, in view of Prop.
4.5.4, all noncontractive policies in this model have infinite cost for δ > 0,
and we can prove the following analog of Prop. 4.4.1, with an essentially
identical proof.
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Proposition 4.5.5: Let Assumptions 4.5.1 and 4.5.2 hold. Then for
each δ > 0:

(a) J*
δ is the unique solution within ℜn

+ of the equation

J(i) = (TJ)(i) + δ, i = 1, . . . , n.

(b) A policy µ is optimal for the δ-perturbed problem (i.e., Jµ,δ =
J*
δ ) if and only if TµJ*

δ = TJ*
δ . Moreover, for the δ-perturbed

problem, all optimal policies are contractive and there exists at
least one contractive policy that is optimal.

(c) The optimal cost function over contractive policies Ĵ [cf. Eq.
(4.91)] satisfies

Ĵ(i) = lim
δ↓0

J∗
δ (i), i = 1, . . . , n.

(d) If the control constraint set U(i) is finite for all states i = 1, . . . , n,
there exists a contractive policy µ̂ that attains the minimum over
all contractive policies, i.e., Jµ̂ = Ĵ .

We note that if U(i) is infinite it is possible that Ĵ = J*, but the
only optimal policy is noncontractive, even if the compactness Assumption
4.5.2 holds. This is shown in the following example, which is adapted from
the paper [BeY16] (Example 2.1).

Example 4.5.1

Consider an exponentiated cost SSP problem with two states 1 and 2, in
addition to the termination state t; see Fig. 4.5.1. From state 1 we transition
to t with cost -1. At state 2 we must choose u ∈ [0, 1], with cost equal to u.
Then, we transition to state 1 with probability e−u, and we self-transition to
state 2 with probability 1− e−u. It can be seen that a policy µ is contractive
if and only if it applies µ(2) = u > 0 at state 2. Thus, from Eqs. (4.72)
and (4.81), the Bellman equation for the corresponding exponentiated cost
problem is

J(1) = e−1, J(2) = min
u∈[0,1]

[

e−ueuJ(1) + (1− e−u)euJ(2)
]

,

from which
J(2) = min

u∈[0,1]

[

e−1 + (eu − 1)J(2)
]

.

A stationary policy µ that applies µ(2) = u ∈ [0, 1] has cost equal to

Jµ(2) =
e−1

2− eu
.
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a 1 2a 1 2 1 2 t b

t b Destination

0 1 2

u Cost −1 Cost 1u Cost u
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Prob. 1− e
−u

u Prob. e−u

Figure 4.5.1. An exponentiated cost SSP problem with two states 1, 2, and a
termination state t. Here we have Ĵ = J∗ and the compact control constraint set
U(2) = [0, 1], but there is no contractive policy that attains this cost.

We have
J∗(2) = Ĵ(2) = e−1,

but the only optimal policy is the noncontractive policy that applies u = 0,
while there is no contractive policy that attains this cost. Note that in this
example, the compactness Assumption 4.5.2 is satisfied.

Finally, in analogy with Prop. 4.4.2, we can prove the following propo-
sition, again with an essentially identical proof.

Proposition 4.5.6: Let Assumptions 4.5.1 and 4.5.2 hold. Then:

(a) The optimal cost function over contractive policies Ĵ is the unique
fixed point of T within the set {J ∈ ℜn

+ | J ≥ Ĵ}.

(b) We have T kJ → Ĵ for every J ∈ ℜn
+ with J ≥ Ĵ .

(c) Let µ be a contractive policy. Then µ is optimal within the class
of contractive policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

Finally, let us us note that generally, under Assumptions 4.5.1 and
4.5.2, J* need not be a fixed point of T , similar to SSP problems under
the weak shortest path conditions of Section 4.4 (cf. the example of Section
3.6.1).

Example 4.5.2 (An Exponential Cost SSP Problem Where
J* is not a Fixed Point of T )

This is an exponential cost version of Example 3.6.2 of Section 3.6. Consider
the SSP problem of Fig. 3.6.2, which involves a noncontractive policy µ, whose
transitions are marked by solid lines in the figure, and form the two zero length
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cycles shown. All the transitions under µ are deterministic, except at state
1 where the successor state is 2 or 5 with equal probability 1/2. However,
we assume that the cost of the policy for a given state is the expected value
of the exponential of the lim sup of the finite horizon path length. Using a
calculation similar to the one for Example 3.6.2, it can be verified that

Jµ(1) = 1
2 (e

1 + e−1), Jµ(2) = Jµ(5) = e1,

so that the Bellman equation (4.81) at state 1,

Jµ(1) =
1

2

(

Jµ(2) + Jµ(5)
)

,

is not satisfied. Thus Jµ is not a fixed point of Tµ. If for i = 1, 4, 7, we
introduce another control that leads from i to t with a cost c > 2, we create
a contractive policy that is strictly suboptimal, while not affecting J∗, which
again is not a fixed point of T .

4.5.3 Algorithms

The discussion of Section 4.4 regarding algorithms applies to affine mono-
tonic problems with no essential changes. In particular, the convergence
rate result of Prop. 4.4.3 is extended as follows, assuming that there exists
a contractive policy µ̂ that is optimal within the class of contractive poli-
cies, i.e., Jµ̂ = Ĵ . This is true if the sets U(i) are finite [cf. Prop. 4.5.5(d)],
but not necessarily under the compactness Assumption 4.5.2; cf. Example
4.5.1, where the only optimal policy is noncontractive.

Proposition 4.5.7: (Convergence Rate of VI) Let Assumptions
4.5.1 and 4.5.2 hold, and assume that there exists a contractive policy
µ̂ that is optimal within the class of contractive policies, i.e., Jµ̂ = Ĵ .
Then

∥

∥TJ − Ĵ‖v ≤ β‖J − Ĵ‖v, ∀ J ≥ Ĵ ,

where ‖ · ‖v is a weighted sup-norm for which Tµ∗ is a contraction and
β is the corresponding modulus of contraction. Moreover, we have

‖J − Ĵ‖v ≤ 1

1− β
max

i=1,...,n

J(i)− (TJ)(i)

v(i)
, ∀ J ≥ Ĵ .

We also note that the PI algorithm with perturbations for SSP de-
veloped in Section 4.4 (cf. Prop. 4.4.5) can be readily adapted to affine
monotonic problems. In particular, we have the following proposition.
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Proposition 4.5.8: Let Assumptions 4.5.1 and 4.5.2 hold, and as-
sume that the control constraint sets U(i), i = 1, . . . , n, are finite. Let
{δk} be a positive sequence with δk ↓ 0, and let µ0 be any contrac-
tive policy. Then the sequence {Jµk} generated by the perturbed PI
algorithm

Tµk+1Jµk,δk
= TJµk,δk

,

[cf. Eq. (4.66)] satisfies Jµk → Ĵ .

Both the preceding proposition and its SSP counterpart (Prop. 4.4.5)
can also be proved assuming the compactness Assumption 4.5.2 [instead of
finiteness of U(i)]. The proof that Jµk → Ĵ is essentially the same in both
cases. However, by using Example 4.5.1, it can be shown that the sequence
of contractive policies µk generated by the perturbed PI algorithm need
not converge to a contractive policy.

Finally, it is possible to compute Ĵ by solving a linear programming
problem, in the case where the control space U is finite (cf. Prop. 4.4.6).
In particular, we have the following proposition.

Proposition 4.5.9: Let Assumptions 4.5.1 and 4.5.2 hold. Then if a
vector J ∈ ℜn satisfies J ≤ TJ , it also satisfies J ≤ Ĵ .

Proof: Let J ≤ TJ and δ > 0. We have J ≤ TJ + δe = TδJ , and
hence J ≤ T k

δ J for all k. Since the infinite cost conditions hold for the
δ-perturbed problem, it follows that T k

δ J → J*
δ , so J ≤ J*

δ . By taking

δ ↓ 0 and using Prop. 4.5.5(c), it follows that J ≤ Ĵ . Q.E.D.

Since Ĵ = T Ĵ [cf. Prop. 4.5.6(a)], the preceding proposition shows
that Ĵ is the unique solution of the problem of maximizing

∑n
i=1 βiJ(i)

over all J =
(

J(1), . . . , J(n)
)

such that J ≤ TJ , where β1, . . . , βn are any
positive scalars. This problem can be written as

maximize
n
∑

i=1

βiJ(i)

subject to J(i) ≤ b(i, u) +

n
∑

j=1

Aij(u)J(j), i = 1, . . . , n, u ∈ U(i),

and it is a linear program if each U(i) is a finite set [cf. Eq. (4.70)].
The following example involves the same two-node deterministic short-

est path problem as Example 4.4.1, but with exponentiated cost of a path.
It demonstrates the preceding analysis, both in the case where the infinite
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cost Assumption 4.5.3 is satisfied and for the case where it is not. The
example also illustrates that the framework of this section allows the treat-
ment of deterministic shortest path problems with cycles that have either
positive and negative cycles (and also zero length cycles if a perturbation
approach is used)!

Example 4.5.3 (Shortest Paths with Risk-Sensitive Cost)

Consider the shortest path problem of Fig. 4.4.1, where there is a single state
1 in addition to the termination state t, and at state 1 there are two choices:
a self-transition, which costs a, and a transition to t, which costs b. However,
the cost of a policy is equal to the exponentiated length of the path of the
policy, thereby obtaining an affine monotonic model with one state, i = 1, and
J̄ = 1. There are two policies denoted µ and µ: the first policy is 1 → t, while
the second policy is the self-transition 1 → 1. The corresponding mappings
Tµ and Tµ are given by

TµJ = eb, TµJ = eaJ,

corresponding to

Aµ = 0, bµ = eb, Aµ = ea, bµ = 0;

cf. Eq. (4.81). Clearly µ is contractive, while µ is noncontractive when a ≥ 0,
and contractive when a < 0. Note that when µ is noncontractive, Assumption
4.5.3 is violated because we have bµ = 0. The mapping T is given by

TJ = min
{

eb, eaJ
}

.

The cost functions of µ and µ are

Jµ = eb, Jµ =

{∞ if a > 0,
1 if a = 0,
0 if a < 0.

Consider three cases:

(a) When a < 0, the self-transition cycle has negative cost, but Prop. 4.5.3
applies because both policies are contractive. Indeed, consistent with
Prop. 4.5.3(b), we have J∗ = Ĵ = 0, and J∗ = 0 is the unique fixed
point of T within ℜ+. Moreover, VI converges to J∗ starting from any
J ∈ ℜ+.

(b) When a > 0, or when a = 0 and b ≤ 0, the contractive policy µ is
optimal, we have J∗ = Ĵ = eb and J∗ is a fixed point of T . However,
0 is an additional fixed point of T [the fixed points of T are the scalars
0 and eb when a > 0, and the interval

[

0, eb
]

when a = 0 and b ≤ 0].
When a > 0, VI converges to J∗ when started at J > 0, but stays
at the extraneous fixed point 0 when started at 0! When a = 0 and
b ≤ 0, VI converges to J∗ when started at J ≥ J∗, but stays at J when
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started at J ∈ [0, J∗]. The difficulty here is that the Assumption 4.5.3
is violated because for the noncontractive policy µ we have bµ = 0.
However, Prop. 4.5.6 applies, and we can find the contractive optimal
policy by VI starting from any J ≥ J∗, or by the perturbed version of
PI.

(c) When a = 0 and b > 0, we have 1 = J∗ < Ĵ = eb. Then all the
points between J∗ and Ĵ are fixed points of T , and in fact the set of
fixed points within ℜ+ is the interval [0, Ĵ ]. Thus in this exceptional
case there is an interval of fixed points of T containing points both
above and below J∗. This means that J∗ cannot be obtained by VI,
starting either from above or from below! Here, like the preceding
case, the Assumption 4.5.3 is violated because for the noncontractive
policy µ we have bµ = 0. However, Prop. 4.5.6 applies. In this case

we can find Ĵ and the optimal policy within the set of contractive
policies by VI starting from any J ≥ Ĵ , or by the perturbed version of
PI. Nonetheless, these algorithms will not necessarily find J∗ and the
optimal noncontractive policy µ.

4.6 EXTENSIONS AND APPLICATIONS

In this section we will elaborate on some of the methodology of the pre-
ceding sections, and we will discuss a number of applications.

4.6.1 Optimal Stopping

Consider an infinite horizon version of the stopping problems of Section
3.4 of Vol. I. At each state x, we must choose between two actions: pay
a cost s(x) and stop with no further cost incurred, or pay a cost c(x) and
continue the process according to the system equation

xk+1 = fc(xk, wk), k = 0, 1, . . . (4.92)

The objective is to find the optimal stopping policy that minimizes the
total expected cost over an infinite number of stages. It is assumed that
the input disturbances wk have the same probability distribution for all k,
which depends only on the current state xk.

This problem may be viewed as a special case of the SSP problem
of Section 3.1, but here we will not assume that the state space is finite
and the other assumptions of Section 3.1 regarding proper and improper
policies. Instead we will rely on the general theory of unbounded cost
problems developed in Section 4.1.

To put the problem within the framework of the total cost infinite
horizon problem, we introduce an additional state t (the termination state)
and we complete the system equation (4.92) as in Section 3.4 of Vol. I by
letting

xk+1 = t, if uk = stop or xk = t.
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Once the system reaches the termination state, it remains there at no cost.
We first assume that

s(x) ≥ 0, c(x) ≥ 0, for all x ∈ X, (4.93)

thus coming under the framework of Assumption P of Section 4.1. [The
case corresponding to Assumption N, where s(x) ≤ 0 and c(x) ≤ 0 for
all x ∈ X will be considered later.] Actually, whenever there exists an
ǫ > 0 such that c(x) ≥ ǫ for all x ∈ X , the results to be obtained under
the assumption (4.93) apply also to the case where s(x) is bounded below
by some scalar rather than bounded by zero. The reason is that, if c(x)
is assumed to be greater than ǫ > 0 for all x ∈ X , any policy that will
not stop within a finite expected number of stages results in infinite cost
and can be excluded from consideration. As a result, if we reformulate the
problem and add a constant r to s(x) so that s(x) + r ≥ 0 for all x ∈ X ,
the optimal cost J*(x) will merely be increased by r, while optimal policies
will remain unaffected.

The mapping T that defines the DP algorithm takes the form

(TJ)(x) =

{

min
[

s(x), c(x) + E
{

J
(

fc(x,w)
)}

]

if x 6= t,

0 if x = t,
(4.94)

where s(x) is the cost of the stopping action, and c(x) + E
{

J
(

fc(x,w)
)}

is the cost of the continuation action. Since the control space has only two
elements, by Prop. 4.1.7(a), we have

lim
k→∞

(T kJ0)(x) = J*(x), x ∈ X,

where J0 is the zero function [J0(x) = 0, for all x ∈ X ]. By Prop. 4.1.5,
there exists a stationary optimal policy given by

stop if s(x) < c(x) + E
{

J*
(

fc(x,w)
)

}

,

continue if s(x) ≥ c(x) + E
{

J*
(

fc(x,w)
)

}

.

Let us denote by S∗ the optimal stopping set (which may be empty)

S∗ =
{

x ∈ X | s(x) < c(x) + E
{

J*
(

fc(x,w)
)}

}

.

Consider also the sets

Sk =
{

x ∈ X | s(x) < c(x) + E
{

(T kJ0)
(

fc(x,w)
)}

}
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that determine the optimal policy for finite horizon versions of the stopping
problem. Since we have

J0 ≤ TJ0 ≤ · · · ≤ T kJ0 ≤ · · · ≤ J*,

it follows that

S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ · · · ⊂ S∗

and therefore ∪∞
k=1Sk ⊂ S∗. Also, if x̃ /∈ ∪∞

k=1Sk, then we have

s(x̃) ≥ c(x̃) + E
{

(T kJ0)
(

fc(x̃, w)
)

}

, k = 0, 1, . . .

By taking the limit as k → ∞, and by using the monotone convergence
theorem and the fact T kJ0 → J*, we obtain

s(x̃) ≥ c(x̃) + E
{

J*
(

fc(x̃, w)
)

}

,

from which x̃ /∈ S∗. Hence

S∗ = ∪∞
k=1Sk.

In other words, the optimal stopping set S∗ for the infinite horizon problem
is equal to the union of all the finite horizon stopping sets Sk.

Consider now, as in Section 3.4 of Vol. I, the one-step-to-go stopping
set

S̃1 =
{

x ∈ S | s(x) ≤ c(x) + E
{

s
(

fc(x,w)
)}

}

(4.95)

and assume that S̃1 is absorbing in the sense

fc(x,w) ∈ S̃1, for all x ∈ S̃1, w ∈ W, (4.96)

and that the (monotonically nonincreasing) sequence (T ks)(x) converges
to J∗(x) for all x ∈ X . Then, as in Section 3.4 of Vol. I, it follows that the
one-step lookahead policy

stop if and only if x ∈ S̃1

is optimal. We now provide some examples.
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Example 4.6.1 (Asset Selling)

Consider the version of the asset selling example of Sections 3.4 and 5.4 of
Vol. I, where the rate of interest r is zero and there is instead a maintenance
cost c > 0 per period for which the house remains unsold. Furthermore, past
offers can be accepted at any future time. We have the following optimality
equation:

J∗(x) = max
[

x, −c+ E
{

J∗
(

max(x,w)
)}

]

.

In this case we consider maximization of total expected reward, the continua-
tion cost is strictly negative, and the stopping reward x is positive. Hence the
assumption (4.93) is not satisfied. If, however, we assume that x takes values
in a bounded interval [0,M ], where M is an upper bound on the possible
values of offers, our analysis is still applicable [cf. the discussion following Eq.
(4.93)]. Consider the one-step-to-go stopping set given by

S̃1 =
{

x | x ≥ −c+ E
{

max(x,w)
}

}

.

After a calculation similar to the one given in Section 3.4 of Vol. I, we see
that

S̃1 = {x | x ≥ a},

where α is the scalar satisfying

α = P (α)α+

∫ ∞

α

w dP (w)− c.

Clearly, S̃1 is absorbing in the sense of Eq. (4.96), and therefore the one-step
lookahead policy, which accepts the first offer that is greater or equal to α is
optimal.

Example 4.6.2 (Sequential Hypothesis Testing)

Consider the hypothesis testing problem of Example 4.3.4 of Vol. I for the
case where the number of possible observations is unlimited. Here the states
are x0 and x1 (true distribution of the observations is f0 and f1, respectively).
The set X is the interval [0, 1] and corresponds to the sufficient statistic

pk = P (xk = x0 | z0, z1, . . . , zk).

To each p ∈ [0, 1] we may assign the stopping cost

s(p) = min
[

(1− p)L0, pL1

]

,

i.e., the cost associated with optimal choice between the distributions f0 and
f1. The mapping T of Eq. (4.94) takes the form

(TJ)(p) = min

[

(1− p)L0, pL1, c+ E
z

{

J

(

pf0(z)

pf0(z) + (1− p)f1(z)

)}]
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for all p ∈ [0, 1], where the expectation over z is taken with respect to the
probability distribution

P (z) = pf0(z) + (1− p)f1(z), z ∈ Z.

The optimal cost function J∗ satisfies Bellman’s equation

J∗(p) = min

[

(1− p)L0, pL1, c+E
z

{

J∗

(

pf0(z)

pf0(z) + (1− p)f1(z)

)}]

and is obtained in the limit through the equation

J∗(p) = lim
k→∞

(T kJ0)(p), p ∈ [0, 1],

where J0 is the zero function on [0, 1].
Now consider the functions T kJ0, k = 0, 1, . . . It is clear that

J0 ≤ TJ0 ≤ · · · ≤ T kJ0 ≤ · · · ≤ min
[

(1− p)L0, pL1

]

.

Furthermore, in view of the analysis of Example 4.3.4 of Vol. I, we have that
the function T kJ0 is concave on [0, 1] for all k. Hence the pointwise limit
function J∗ is also concave on [0, 1]. In addition, Bellman’s equation implies
that

J∗(0) = J∗(1) = 0,

J∗(p) ≤ min
[

(1− p)L0, pL1

]

.

Using the reasoning illustrated in Fig. 4.6.1 it follows that [provided c <
L0L1/(L0 + L1)] there exist two scalars α, β with 0 < β ≤ α < 1, that
determine an optimal stationary policy of the form

accept f0 if p ≤ α,

accept f1 if p ≤ β,

continue the observations if β < p < α.

In view of the optimality of the preceding stationary policy, the sequential
probability ratio test described in Example 4.3.4 of Vol. I is justified when
the number of possible observations is infinite.

The Case of Negative Transition Costs

We now consider the stopping problem under Assumption N, i.e.,

s(x) ≤ 0, c(x) ≤ 0, for all x ∈ X.

Under these circumstances there is no penalty for continuing operation of
the system (although by not stopping at a given state, a favorable oppor-
tunity may be missed). The mapping T is given by

(TJ)(x) = min
[

s(x), c(x) + E
{

J
(

fc(x,w)
)}

]

.
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L0L1

L0+L1

(1 − p)L0

0 pL1

1 αα β

{

c + E
z

{

J∗

(

pf0(z)

pf0(z) + (1 − p)f1(z)

)}

β p 1 0
p 1 01 0

) J∗(p)

Accept f1Continue Observations Accept f01 Continue Observations Accept
Continue Observations Accept

Figure 4.6.1 Derivation of the sequential probability ratio test.

The optimal cost function J* satisfies

J*(x) ≤ s(x), x ∈ X,

and by using Props. 4.1.1 and 4.1.7(b), we have

J* = TJ*, J* = lim
k→∞

T kJ0 = lim
k→∞

T ks,

where J0 is the zero function. It can also be seen that if the one-step-to-go
stopping set S̃1 is absorbing [cf. Eq. (4.96)], a one-step lookahead policy is
optimal.

Example 4.6.3 (The Rational Burglar)

This example was considered in Example 3.4.2 of Vol. I where it was shown
that a one-step lookahead policy is optimal for any finite horizon length. The
optimality equation is

J∗(x) = max
[

x, (1− p)E
{

J∗(x+ w)
}

]

.

The problem is equivalent to a minimization problem where

s(x) = −x, c(x) = 0,

so Assumption N holds. From the preceding analysis, we have that T ks → J∗

and that a one-step lookahead policy is optimal if the one-step stopping set
is absorbing [cf. Eqs. (4.95) and (4.96)]. It can be shown (see the analysis
of Example 3.4.2 of Vol. I) that this condition holds, so the finite horizon
optimal policy whereby the burglar retires when his accumulated earnings
reach or exceed (1− p)w/p is optimal for an infinite horizon as well.
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Example 4.6.4 (A Problem with no Optimal Policy)

This is an example of a deterministic stopping problem where Assumption N
holds, and an optimal policy does not exist, even though only two controls
are available at each state (stop and continue). The states are the positive
integers, and continuation from state i leads to state i+1 with certainty and
no cost, i.e., X = {1, 2, . . .}, c(i) = 0, and fc(i, w) = i + 1 for all i ∈ X and
w ∈ W . The stopping cost is s(i) = −1 + (1/i) for all i ∈ X, so that there is
an incentive to delay stopping at every state. We have J∗(i) = −1 for all i,
and the optimal cost −1 can be approached arbitrarily closely by postponing
the stopping action for a sufficiently long time. However, there is no policy
that attains the optimal cost.

4.6.2 Inventory Control

Let us consider a discounted, infinite horizon version of the inventory con-
trol problem of Section 3.2 in Vol. I. Inventory stock evolves according to
the equation

xk+1 = xk + uk − wk, k = 0, 1, . . .

We assume that the successive demands wk are independent and bounded,
and have identical probability distributions. We also assume for simplicity
that there is no fixed cost. The case of a nonzero fixed cost can be treated
similarly. The cost function is

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...,N−1

{

N−1
∑

k=0

αk
(

cµk(xk) +H
(

xk + µ(xk)− wk

))

}

,

where
H(y) = pmax(0,−y) + hmax(0, y).

The DP algorithm is given by

J0(x) = 0,

(T k+1J0)(x) = min
0≤u

E
{

cu+H(x+ u− w) + α(T kJ0)(x + u− w)
}

.

We first show that the optimal cost is finite for all initial states:

J*(x0) = min
π

Jπ(x0) < ∞, for all x0 ∈ X.

Indeed, consider the policy π̃ = {µ̃, µ̃, . . .}, where µ̃ is defined by

µ̃(x) =
{

0 if x ≥ 0,
−x if x < 0.
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Since wk is nonnegative and bounded, it follows that the inventory stock
xk when the policy π̃ is used satisfies

−wk−1 ≤ xk ≤ max(0, x0), k = 1, 2, . . . ,

and is bounded. Hence µ̃(xk) is also bounded. It follows that the cost per
stage incurred when π̃ is used is bounded, and in view of the presence of
the discount factor we have

Jπ̃(x0) < ∞, x0 ∈ X.

Since J* ≤ Jπ̃, the finiteness of the optimal cost follows.
Next we observe that, under the assumption c < p, the functions

T kJ0 are real-valued and convex. Indeed, we have

J0 ≤ TJ0 ≤ · · · ≤ T kJ0 ≤ · · · ≤ J*,

which implies that T kJ0 is real-valued. Convexity follows by induction as
shown in Section 3.2 of Vol. I.

Consider now the sets

Uk(x, λ) =
{

u ≥ 0 | E
{

cu+H(x+u−w)+α(T kJ0)(xu−w)
}

≤ λ
}

. (4.97)

These sets are bounded since the expected value within the braces above
tends to ∞ as u → ∞. Also, the sets Uk(x, λ) are closed since the expected
value in Eq. (4.97) is a continuous function of u [recall that T kJ0 is a real-
valued convex and hence continuous function]. Thus we may invoke Prop.
4.1.8 and assert that

lim
k→∞

(T kJ0)(x) = J*(x), x ∈ X.

It follows from the convexity of the functions T kJ0 that the limit function
J* is a real-valued convex function. Furthermore, an optimal stationary
policy µ∗ can be obtained by minimizing in the right-hand side of Bellman’s
equation

J*(x) = min
u≥0

E
{

cu+H(x+ u− w) + αJ*(x+ u− w)
}

.

We have

µ∗(x) =

{

S∗ − x if x ≤ S∗,
0 otherwise,

where S∗ is a minimizing point of

G∗(y) = cy + L(y) + αE{J*(y − w)},
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with
L(y) = E

{

H(y − w)
}

.

It can be seen that if p > c, we have lim|y|→∞ G∗(y) = ∞, so that such a
minimizing point exists. Furthermore, by using the observation made near
the end of Section 4.1, it follows that a minimizing point S∗ of G∗(y) may
be obtained as a limit point of a sequence {Sk}, where for each k the scalar
Sk minimizes

Gk(y) = cy + L(y) + αE
{

(T kJ0)(y − w)
}

and is obtained by means of the VI method.
It turns out that the critical level S∗ has a simple characterization.

It can be shown that S∗ minimizes over y the expression (1−α)cy+L(y),
and it can be essentially obtained in closed form (see Exercise 4.18, and
the book [HeS84], Ch. 2).

In the case where there is a positive fixed cost (K > 0), the same
line of argument may be used. Similarly, we prove that J* is a real-valued
K-convex function. A separate argument is necessary to prove that J* is
also continuous (this is intuitively clear and is left for the reader). Once
K-convexity and continuity of J* are established, the optimality of a sta-
tionary (s∗, S∗) policy follows from the equation

J*(x) = min
u≥0

E
{

C(u) +H(x+ u− w) + αJ*(x+ u− w)
}

,

where C(u) = K + cu if u > 0 and C(0) = 0.

4.6.3 Optimal Gambling Strategies

A gambler enters a certain game played as follows. The gambler may stake
at any time k any amount uk ≥ 0 that does not exceed his current fortune
xk (defined to be his initial capital plus his gain or minus his loss thus
far). He wins his stake back and as much more with probability p and he
loses his stake with probability (1− p). Thus the gambler’s fortune evolves
according to the equation

xk+1 = xk + wkuk, k = 0, 1, . . . , (4.98)

where wk = 1 with probability p and wk = −1 with probability (1 − p).
Several games, such as playing red and black in roulette, fit this description.

The gambler enters the game with an initial capital x0, and his goal is
to increase his fortune up to a levelX . He continues gambling until he either
reaches his goal or loses his entire initial capital, at which point he leaves
the game. The problem is to determine the optimal gambling strategy for
maximizing the probability of reaching his goal. By a gambling strategy,
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we mean a rule that specifies what the stake should be at time k when the
gambler’s fortune is xk, for every xk with 0 < xk < X .

The problem may be cast within the total cost, infinite horizon frame-
work, where we consider maximization in place of minimization. Let us
assume for convenience that fortunes are normalized so that X = 1. The
state space is the set [0, 1]∪{t}, where t is a termination state to which the
system moves with certainty from both states 0 and 1 with corresponding
rewards 0 and 1. When xk 6= 0, xk 6= 1, the system evolves according to
Eq. (4.98). The control constraint set is specified by

0 ≤ uk ≤ xk, 0 ≤ uk ≤ 1− xk.

The reward per stage when xk 6= 0 and xk 6= 1 is zero. Under these
circumstances the probability of reaching the goal is equal to the total
expected reward. Assumption N holds since our problem is equivalent to a
problem of minimizing expected total cost with nonpositive costs per stage.

The mapping T defining the DP algorithm takes the form

(TJ)(x) =







max 0≤u≤x
0≤u≤1−x

[pJ(x+ u) + (1− p)J(x − u)] if x ∈ (0, 1),

0 if x = 0,
1 if x = 1,

for any function J : [0, 1] 7→ [0,∞].
Consider now the case where

0 < p <
1

2
,

i.e., the game is unfair to the gambler. A discretized version of the case
where 1/2 ≤ p < 1 is considered in Exercise 4.21. When 0 < p < 1/2, it
is intuitively clear that if the gambler follows a very conservative strategy
and stakes a very small amount at each time, he is all but certain to lose
his capital. For example, if the gambler adopts a strategy of betting 1/n
at each time, then it may be shown (see Exercise 4.21 or Ash [Ash70], p.
182) that his probability of attaining the target fortune of 1 starting with
an initial capital i/n, 0 < i < n, is given by

(

(

1− p

p

)i

− 1

)

((

1− p

p

)n

− 1

)−1

.

If 0 < p < 1/2, n tends to infinity, and i/n tends to a constant, the above
probability tends to zero, thus indicating that placing consistently small
bets is a bad strategy.

We are thus led to a policy that places large bets and, in particular,
the bold strategy whereby the gambler stakes at each time k his entire
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fortune xk or just enough to reach his goal, whichever is least. In other
words, the bold strategy is the stationary policy µ∗ given by

µ∗(x) =

{

x if 0 < x ≤ 1/2,
1− x if 1/2 ≤ x < 1.

We will prove that the bold strategy is indeed an optimal policy. To this
end it is sufficient to show that for every initial fortune x ∈ [0, 1] the value of
the reward function Jµ∗(x) corresponding to the bold strategy µ∗ satisfies
the sufficiency condition (cf. Prop. 4.1.6)

TJµ∗ = Jµ∗ ,

or equivalently
Jµ∗(0) = 0, Jµ∗(1) = 1,

Jµ∗(x) ≥ pJµ∗(x+ u) + (1− p)Jµ∗(x− u),

for all x ∈ (0, 1) and u ∈ [0, x] ∩ [0, 1− x].
By using the definition of the bold strategy, Bellman’s equation

Jµ∗ = Tµ∗Jµ∗ ,

is written as
Jµ∗(0) = 0, Jµ∗(1) = 1, (4.99)

Jµ∗(x) =

{

pJµ∗(2x) if 0 < x ≤ 1/2,
p+ (1− p)Jµ∗(2x− 1) if 1/2 ≤ x < 1.

(4.100)

The following lemma shows that Jµ∗ is uniquely defined from these rela-
tions.

Lemma 4.6.1: For every p, with 0 < p ≤ 1/2, there is only one
bounded function on [0, 1] satisfying Eqs. (4.99) and (4.100), the func-
tion Jµ∗ . Furthermore, Jµ∗ is continuous and strictly increasing on
[0, 1].

Proof: Suppose that there existed two bounded functions J1 : [0, 1] 7→ ℜ
and J2 : [0, 1] 7→ ℜ such that Ji(0) = 0, Ji(1) = 1, i = 1, 2, and

Ji(x) =

{

pJi(2x) if 0 < x ≤ 1/2,
p+ (1− p)Ji(2x− 1) if 1/2 ≤ x < 1,

i = 1, 2.

Then we have

J1(2x)− J2(2x) =
J1(x)− J2(x)

p
, if 0 ≤ x ≤ 1/2, (4.101)
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J1(2x− 1)− J2(2x− 1) =
J1(x)− J2(x)

1− p
, if 1/2 ≤ x ≤ 1. (4.102)

Let z be any real number with 0 ≤ z ≤ 1. Define

z1 =

{

2z if 0 ≤ z ≤ 1/2,
2z − 1 if 1/2 < z ≤ 1,

...

zk =

{

2zk−1 if 0 ≤ zk−1 ≤ 1/2,
2zk−1 − 1 if 1/2 < zk−1 ≤ 1,

for k = 1, 2, . . . Then from Eqs. (4.101) and (4.102) it follows (using p ≤
1/2) that

∣

∣J1(zk)− J1(zk)
∣

∣ ≥
∣

∣J1(z)− J2(z)
∣

∣

(1 − p)k
, k = 1, 2, . . .

Since J1(zk) − J2(zk) is bounded, it follows that J1(z) − J2(z) = 0, for
otherwise the right side of the inequality would tend to ∞. Since z ∈ [0, 1]
is arbitrary, we obtain J1 = J2. Hence Jµ∗ is the unique bounded function
on [0, 1] satisfying Eqs. (4.99) and (4.100).

To show that Jµ∗ is strictly increasing and continuous, we consider
the mapping Tµ∗ , which operates on functions J : [0, 1] 7→ [0, 1] and is
defined by

(Tµ∗J)(x) =

{

pJ(2x) + (1− p)J(0) if 0 < x ≤ 1/2,
pJ(1) + (1 − p)J(2x− 1) if 1/2 ≤ x < 1,

(Tµ∗J)(0) = 0, (Tµ∗J)(1) = 1. (4.103)

Consider the functions J0, T ∗
µJ0, · · · , T k

µ∗J0, . . ., where J0 is the zero func-
tion [J0(x) = 0 for all x ∈ [0, 1] ]. We have

Jµ∗(x) = lim
k→∞

(T k
µ∗J0)(x), x ∈ [0, 1]. (4.104)

Furthermore, the functions T k
µ∗J0 can be shown to be monotonically non-

decreasing in the interval [0, 1]. Hence, by Eq. (4.104), Jµ∗ is also mono-
tonically nondecreasing.

Consider now for n = 0, 1, . . . the sets

Xn =
{

x ∈ [0, 1] | x = k2−n, k = nonnegative integer
}

.

It is straightforward to verify that

(Tm
µ∗J0)(x) = (T n

µ∗J0)(x), x ∈ Xn−1, m ≥ n ≥ 1.
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As a result of this equality and Eq. (4.104),

Jµ∗(x) = (T n
µ∗J0)(x), x ∈ Xn−1, n ≥ 1. (4.105)

A further fact that may be verified by using induction and Eqs. (4.103)
and (4.105) is that for any nonnegative integers k, n for which 0 ≤ k2−n <
(k + 1)2−n ≤ 1, we have

pn ≤ Jµ∗

(

(k + 1)2−n
)

− Jµ∗

(

k2−n
)

≤ (1− p)n. (4.106)

Since any number in [0, 1] can be approximated arbitrarily closely from
above and below by numbers of the form k2−n, and since Jµ∗ has been
shown to be monotonically nondecreasing, it follows from Eq. (4.106) that
Jµ∗ is continuous and strictly increasing. Q.E.D.

We are now in a position to prove the following proposition.

Proposition 4.6.1: The bold strategy is an optimal stationary gam-
bling policy.

Proof: We will prove the sufficiency condition

Jµ∗(x) ≥ pJµ∗(x+u)+(1−p)Jµ∗(x−u), x ∈ [0, 1], u ∈ [0, 1]∩[0, 1−x].
(4.107)

In view of the continuity of Jµ∗ established in the previous lemma, it it
sufficient to establish Eq. (4.107) for all x ∈ [0, 1] and u ∈ [0, x] ∩ [0, 1− x]
that belong to the union ∪∞

n=0Xn of the sets Xn defined by

Xn =
{

z ∈ [0, 1] | z = k2−n, k = nonnegative integer
}

.

We will use induction. By using the fact that Jµ∗(0) = 0, Jµ∗(1/2) = p,
and Jµ∗(1) = 1, we can show that Eq. (4.107) holds for all x and u in X0

and X1. Assume that Eq. (4.107) holds for all x, u ∈ Xn. We will show
that it holds for all x, u ∈ Xn+1.

For any x, u ∈ Xn+1 with u ∈ [0, x] ∩ [0, 1 − x], there are four possi-
bilities:

1. x+ u ≤ 1/2,

2. x− u ≥ 1/2,

3. x− u ≤ x ≤ 1/2 ≤ x+ u,

4. x− u ≤ 1/2 ≤ x ≤ x+ u,

We will prove Eq. (4.107) for each of these cases.
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Case 1 . If x, u ∈ Xn+1, then 2x ∈ Xn, and 2u ∈ Xn, and by the
induction hypothesis

Jµ∗(2x)− pJµ∗(2x+ 2u)− (1 − p)Jµ∗(2x− 2u) ≥ 0. (4.108)

If x+ u ≤ 1/2, then by Eq. (4.100)

Jµ∗(x) − pJµ∗(x+ u)− (1− p)Jµ∗(x− u)

= p
(

Jµ∗(2x)− pJµ∗(2x+ 2u)− (1− p)Jµ∗(2x− 2u)
)

and using Eq. (4.108), the desired relation Eq. (4.107) is proved for the
case under consideration.

Case 2 . If x, u ∈ Xn+1, then (2x− 1) ∈ Xn and 2u ∈ Xn, and by the
induction hypothesis

Jµ∗(2x− 1)− pJµ∗(2x+ 2u− 1)− (1− p)Jµ∗(2x− 2u− 1) ≥ 0.

If x− u ≥ 1/2, then by Eq. (4.100)

Jµ∗(x) − pJµ∗(x+ u)− (1− p)Jµ∗(x− u)

= p+ (1− p)Jµ∗(2x− 1)− p
(

p+ (1− p)Jµ∗(2x+ 2u− 1)
)

− (1 − p)
(

p+ (1− p)Jµ∗(2x− 2u− 1)
)

= (1− p)
(

Jµ∗(2x− 1)− pJµ∗(2x+ 2u− 1)− (1 − p)Jµ∗(2x− 2u− 1)
)

≥ 0,

and Eq. (4.107) follows from the preceding relations.
Case 3 . Using Eq. (4.100), we have

Jµ∗(x)− pJµ∗(x+ u)− (1− p)Jµ∗(x− u)

= pJµ∗(2x)− p
(

p+ (1− p)Jµ∗(2x+ 2u− 1)
)

− p(1− p)Jµ∗(2x− 2u)

= p
(

Jµ∗(2x)− p− (1− p)Jµ∗(2x+ 2u− 1)− (1 − p)Jµ∗(2x− 2u)
)

.

Now we must have x ≥ 1
4 , for otherwise u < 1

4 and x + u < 1/2. Hence
2x ≥ 1/2 and the sequence of equalities can be continued as follows:

Jµ∗(x) − pJµ∗(x+ u)− (1− p)Jµ∗(x− u)

= p
(

p+ (1− p)Jµ∗(4x− 1)− p

− (1− p)Jµ∗(2x+ 2u− 1)− (1− p)Jµ∗(2x− 2u)
)

= p(1− p)
(

Jµ∗(4x− 1)− Jµ∗(2x+ 2u− 1)− Jµ∗(2x− 2u)
)

= (1− p)
(

Jµ∗(2x− 1/2)− pJµ∗(2x+ 2u− 1)− pJµ∗(2x− 2u)
)

.

Since p ≤ (1 − p), the last expression is greater than or equal to both

(1− p)
(

Jµ∗(2x− 1/2)− pJµ∗(2x+ 2u− 1)− (1− p)Jµ∗(2x− 2u)
)
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and

(1− p)
(

Jµ∗(2x− 1/2)− (1− p)Jµ∗(2x+ 2u− 1)− pJµ∗(2x− 2u)
)

.

Now for x, u ∈ Xn+1, and n ≥ 1, we have (2x−1/2) ∈ Xn and (2u−1/2) ∈
Xn if (2u− 1/2) ∈ [0, 1], and (1/2− 2u) ∈ Xn if (1/2− 2u) ∈ [0, 1]. By the
induction hypothesis, the first or the second of the preceding expressions
is nonnegative, depending on whether 2x+2u− 1 ≥ 2x− 1/2 or 2x− 2u ≥
2x− 1/2 (i.e., u ≥ 1

4 or u ≤ 1
4 ). Hence Eq. (4.107) is proved for case 3.

Case 4 . The proof resembles the one for case 3. Using Eq. (4.100),
we have

Jµ∗(x)− pJµ∗(x+ u)− (1 − p)Jµ∗(x− u)

= p+ (1− p)Jµ∗(2x− 1)− p
(

p+ (1− p)Jµ∗(2x+ 2u− 1)
)

− (1 − p)pJµ∗(2x− 2u)

= p(1− p)

+ (1 − p)
(

Jµ∗(2x− 1)− pJµ∗(2x+ 2u− 1)− pJµ∗(2x− 2u)
)

.

We must have x ≤ 3
4 for otherwise u < 1

4 and x − u > 1
2 . Hence 0 ≤

2x− 1 ≤ 1/2 ≤ 2x− 1/2 ≤ 1, and using Eq. (4.100) we have

(1− p)Jµ∗(2x− 1) = (1− p)pJµ∗(4x− 2) = p
(

Jµ∗(2x− 1/2)− p
)

.

Using the preceding relations, we obtain

Jµ∗(x) − pJµ∗(x+ u)− (1 − p)Jµ∗(x− u)

= p(1− p) + p
(

Jµ∗(2x− 1/2)− p
)

− p(1− p)Jµ∗(2x+ 2u− 1)

− p(1− p)Jµ∗(2x− 2u)

= p
(

(1− 2p) + Jµ∗(2x− 1/2)− (1 − p)Jµ∗(2x+ 2u− 1)

− (1− p)Jµ∗(2x− 2u)
)

.

These relations are equal to both

p
(

(1 − 2p)
(

1− Jµ∗(2x+ 2u− 1)
)

+ Jµ∗(x− 1/2)− pJµ∗(2x+ 2u− 1)− (1− p)Jµ∗(2x− 2u)
)

and

p
(

(1− 2p)
(

1− Jµ∗(2x− 2u)
)

+ Jµ∗(2x− 1/2)− (1− p)Jµ∗(2x+ 2u− 1)− pJµ∗(2x− 2u)
)

.

Since 0 ≤ Jµ∗(2x+2u−1) ≤ 1 and 0 ≤ Jµ∗(2x−2u) ≤ 1, these expressions
are greater than or equal to both

p
(

Jµ∗(2x− 1/2)− pJµ∗(2x+ 2u− 1)− (1− p)Jµ∗(2x− 2u)
)
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and

p
(

Jµ∗(2x− 1/2)− (1 − p)Jµ∗(2x+ 2u− 1)− pJµ∗(2x− 2u)
)

and the result follows as in case 3. Q.E.D.

We note that the bold strategy is not the unique optimal stationary
gambling strategy. For a characterization of all optimal strategies, see the
book [DuS65], p. 90. Several other gambling problems where strategies of
the bold type are optimal are described in [DuS65], Chapters 5 and 6.

4.6.4 Continuous-Time Problems - Control of Queues

Problems of optimal control of queues often involve unbounded costs per
stage. While by using the theory of Section 1.5.2, it is possible to address
some of these problems similar to discounted problems with bounded cost
per stage, this may involve restrictive assumptions. The alternative is
to use the line of analysis of Section 1.4 based on uniformization. We
recall from that section that if the time between transitions is exponentially
distributed, the discounted continuous-time problem may be converted into
an equivalent discrete-time problem (with bounded or unbounded cost per
stage). In Section 1.4, we discussed some examples where the cost per stage
is bounded. Here we consider some queueing applications where the cost
per stage is unbounded.

Example 4.6.5 (M/M/1 Queue with Controlled Service Rate)

Consider a single-server queueing system where customers arrive according
to a Poisson process with rate λ. The service time of a customer is exponen-
tially distributed with parameter µ (called the service rate). Service times of
customers are independent and are also independent of customer interarrival
times. The service rate µ can be selected from a closed subset M of an inter-
val [0, µ] and can be changed at the times when a customer arrives or when
a customer departs from the system. There is a cost q(µ) per unit time for
using rate µ and a waiting cost c(i) per unit time when there are i customers
in the system (waiting in queue or undergoing service). The idea is that one
should be able to cut down on the customer waiting costs by choosing a faster
service rate, which presumably costs more. The problem, roughly, is to se-
lect the service rate so that the service cost is optimally traded off with the
customer waiting cost.

We assume the following:

1. For some µ ∈ M we have µ > λ. (In words, there is available a ser-
vice rate that is fast enough to keep up with the arrival rate, thereby
maintaining the queue length bounded.)

2. The waiting cost function c is nonnegative, monotonically nondecreas-
ing, and “convex-like” in the sense

c(i+ 2) − c(i+ 1) ≥ c(i+ 1)− c(i), i = 0, 1, . . .
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Transition probabilities for continuous-time chain

Figure 4.6.2 Continuous-time Markov chain and uniform version for Ex-
ample 4.6.5 when the service rate is equal to µ. The transition rates of the
original Markov chain are νi(µ) = λ + µ for states i ≥ 1, and ν0(µ) = λ for
state 0. The transition rate for the uniform version is ν = λ+ µ.

3. The service rate cost function q is nonnegative, and continuous on [0, µ],
with q(0) = 0.

Here the state is the number of customers in the system, and the control
is the choice of service rate following a customer arrival or departure. The
transition rate at state i is

νi(µ) =
{

λ if i = 0,
λ+ µ if i ≥ 1.

The transition probabilities of the Markov chain and its uniform version for
the choice

ν = λ+ µ

are shown in Fig. 4.6.2.
The effective discount factor is

α =
ν

β + ν

and the cost per stage is

1

β + ν

(

c(i) + q(µ)
)

.

Bellman’s equation takes the form

J(0) =
1

β + ν

(

c(0) + (ν − λ)J(0) + λJ(1)
)
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Figure 4.6.3 Determining the optimal service rate at states i and (i+ 1) in
Example 4.6.5. The optimal service rate µ∗(i) tends to increase as the system
becomes more crowded (i increases).

and for i = 1, 2, . . .,

J(i) =
1

β + ν
min
µ∈M

[

c(i) + q(µ) + µJ(i− 1) + (ν − λ− µ)J(i) + λJ(i+ 1)
]

.

An optimal policy is to use at state i the service rate that minimizes the
expression on the right. Thus it is optimal to use at state i the service rate

µ∗(i) = arg min
µ∈M

{

q(µ)− µ∆(i)
}

, (4.109)

where ∆(i) is the differential of the optimal cost

∆(i) = J(i) − J(i− 1), i = 1, 2, . . .

[When the minimum in Eq. (4.109) is attained by more than one service rate
µ we choose by convention the smallest.] We will demonstrate shortly that
∆(i) is monotonically nondecreasing . It will then follow from Eq. (4.109) (see
Fig. 4.6.3) that the optimal service rate µ∗(i) is monotonically nondecreasing .
Thus, as the queue length increases, it is optimal to use a faster service rate.

To show that ∆(i) is monotonically nondecreasing, we use the DP re-
cursion to generate a sequence of functions Jk from the starting function

J0(i) = 0, i = 0, 1, . . .

For k = 0, 1, . . ., we have

Jk+1(0) =
1

β + ν

(

c(0) + (ν − λ)Jk(0) + λJk(1)
)

,
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and for i = 1, 2, . . .,

Jk+1(i) =
1

β + ν
min
µ∈M

[

c(i)+ q(µ)+µJk(i− 1)+ (ν−λ−µ)Jk(i)+λJk(i+1)
]

.

(4.110)
For k = 0, 1, . . . and i = 1, 2, . . ., let

∆k(i) = Jk(i)− Jk(i− 1).

For completeness of notation, define also ∆k(0) = 0. From the theory of
Section 4.1 (see Prop. 4.1.7), we have Jk(i) → J(i) as k → ∞. It follows that

lim
k→∞

∆k(i) = ∆(i), i = 1, 2, . . .

Therefore, it will suffice to show that ∆k(i) is monotonically nondecreasing
for every k. For this we use induction. The assertion is trivially true for
k = 0. Assuming that ∆k(i) is monotonically nondecreasing, we show that
the same is true for ∆k+1(i). Let

µk(0) = 0,

µk(i) = arg min
µ∈M

[

q(µ)− µ∆k(i)
]

, i = 1, 2, . . .

From Eq. (4.110) we have, for all i = 0, 1, . . .,

∆k+1(i+ 1) = Jk+1(i+ 1) − Jk+1(i)

≥ 1

β + ν

(

c(i+ 1) + q
(

µk(i+ 1)
)

+ µk(i+ 1)Jk(i)

+
(

ν − λ− µk(i+ 1)
)

Jk(i+ 1)

+ λJk(i+ 2) − c(i) − q
(

µk(i+ 1)
)

− µk(i+ 1)Jk(i− 1)

−
(

ν − λ− µk(i+ 1)
)

Jk(i) − λJk(i+ 1)
)

=
1

β + ν

(

c(i+ 1)− c(i) + λ∆k(i+ 2) + (ν − λ)∆k(i+ 1)

− µk(i+ 1)
(

∆k(i+ 1)−∆k(i)
))

.

(4.111)

Similarly, we obtain, for i = 1, 2, . . .,

∆k+1(i) ≤
1

β + ν

(

c(i) − c(i− 1) + λ∆k(i+ 1) + (ν − λ)∆k(i)

− µk(i− 1)
(

∆k(i) −∆k(i− 1)
))

.

Subtracting the last two inequalities, we obtain, for i = 1, 2, . . .,

(β + ν)
(

∆k+1(i+ 1) −∆k+1(i)
)

≥
(

c(i+ 1) − c(i)
)

−
(

c(i)− c(i− 1)
)

+ λ
(

∆k(i+ 2)−∆k(i+ 1)
)

+
(

ν − λ− µk(i+ 1)
)(

∆k(i+ 1) −∆k(i)
)

+ µk(i− 1)
(

∆k(i)−∆k(i− 1)
)

.
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Using our convexity assumption on c(i), the fact ν − λ − µk(i + 1) = µ −
µk(i + 1) ≥ 0, and the induction hypothesis, we see that every term on
the right-hand side of the preceding inequality is nonnegative. Therefore,
∆k+1(i + 1) ≥ ∆k+1(i) for i = 1, 2, . . . From Eq. (4.111) we can also show
that ∆k+1(1) ≥ 0 = ∆k+1(0), and the induction proof is complete.

To summarize, the optimal service rate µ∗(i) is given by Eq. (4.109) and
tends to become faster as the system becomes more crowded (i increases).

Example 4.6.6 (M/M/1 Queue with Controlled Arrival Rate)

Consider the same queueing system as in the previous example with the dif-
ference that the service rate µ is fixed, but the arrival rate λ can be controlled.
We assume that λ is chosen from a closed subset Λ of an interval [0, λ], and
there is a cost q(λ) per unit time. All other assumptions of Example 4.6.5
are also in effect. What we have here is a problem of flow control, whereby
we want to trade off optimally the cost for throttling the arrival process with
the customer waiting cost.

This problem is very similar to the one of Example 4.6.5. We choose as
uniform transition rate

ν = λ+ µ

and construct the uniform version of the Markov chain. Bellman’s equation
takes the form

J(0) =
1

β + ν
min
λ∈Λ

[

c(0) + q(λ) + (ν − λ)J(0) + λJ(1)
]

,

J(i) =
1

β + ν
min
λ∈Λ

[

c(i) + q(λ) + µJ(i− 1) + (ν − λ− µ)J(i) + λJ(i+ 1)
]

.

An optimal policy is to use at state i the arrival rate

λ∗(i) = argmin
λ∈Λ

[

q(λ) + λ∆(i+ 1)
]

, (4.112)

where, as before, ∆(i) is the differential of the optimal cost

∆(i) = J(i) − J(i− 1), i = 1, 2, . . .

As in Example 4.6.5, we can show that ∆(i) is monotonically nondecreasing;
so from Eq. (4.112) we see that the optimal arrival rate tends to decrease as

the system becomes more crowded (i increases).

Example 4.6.7 (Optimal Routing for a Two-Station System)

Consider the system consisting of two queues shown in Fig. 4.6.4. Customers
arrive according to a Poisson process with rate λ and are routed upon arrival
to one of the two queues. Service times are independent and exponentially
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Queue 1 Queue 2 Router
Continue Observations Accept λ Queue 1 Queue 2 Router

Figure 4.6.4 Queueing system of Example 4.6.7. The problem is to route
each arriving customer to queue 1 or 2 so as to minimize the total average
discounted waiting cost.

distributed with parameter µ1 in the first queue and µ2 in the second queue.
The cost is

lim
N→∞

E

{∫ tN

0

e−βt
(

c1x1(t) + c2x2(t)
)

dt

}

,

where β, c1, and c2 are given positive scalars, and x1(t) and x2(t) denote the
number of customers at time t in queues 1 and 2, respectively.

As earlier, we construct the uniform version of this problem with uni-
form rate

ν = λ+ µ1 + µ2

and the transition probabilities shown in Fig. 4.6.5. We take as state space
the set of pairs (i, j) of customers in queues 1 and 2. Bellman’s equation takes
the form

J(i, j) =
1

β + ν

(

c1i+ c2j + µ1J
(

(i− 1)+, j
)

+ µ2J
(

i, (j − 1)+
))

+
λ

β + ν
min
[

J(i+ 1, j), J(i, j + 1)
]

,

(4.113)

where for any x we denote

(x)+ = max(0, x).

From this equation we see that an optimal policy is to route an arriving
customer to queue 1 if and only if the state (i, j) at the time of arrival belongs
to the set

X1 =
{

(i, j) | J(i+ 1, j) ≤ J(i, j + 1)
}

. (4.114)

This optimal policy can be characterized better by some further analy-
sis. Intuitively, one expects that optimal routing can be achieved by sending
a customer to the queue that is “less crowded” in some sense. It is therefore
natural to conjecture that, if it is optimal to route to the first queue when
the state is (i, j), it must be optimal to do the same when the first queue is
even less crowded; i.e., the state is (i−m, j) with m ≥ 1. This is equivalent
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Figure 4.6.5 Continuous-time Markov chain and uniform version for Exam-
ple 4.6.7 when customers are routed to the first queue. The states are the
pairs of customer numbers in the two queues.

to saying that the set of states X1 for which it is optimal to route to the first
queue is characterized by a monotonically nondecreasing threshold function

F by means of

X1 =
{

(i, u) | i = F (j)
}

(4.115)

(see Fig. 4.6.6). Accordingly, we call the corresponding optimal policy a
threshold policy.
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Figure 4.6.6 A threshold policy characterized by a threshold function F .

We will demonstrate the existence of a threshold optimal policy by
showing that the functions

∆1(i, j) = J(i+ 1, j) − J(i, j + 1),

∆2(i, j) = J(i, j + 1) − J(i+ 1, j)

are monotonically nondecreasing in i for each fixed j, and in j for each fixed i,
respectively. We will show this property for ∆1; the proof for ∆2 is analogous.
It will be sufficient to show that for all k = 0, 1, . . ., the functions

∆k
1(i, j) = Jk(i+ 1, j)− Jk(i, j + 1) (4.116)

are monotonically nondecreasing in i for each fixed j, where Jk is generated by
the DP recursion starting from the zero function; i.e., Jk+1(i, j) = (TJk)(i, j),
where T is the DP mapping defining Bellman’s equation (4.113) and J0 = 0.
This is true because Jk(i, j) → J(i, j) for all i, j as k → ∞ [Prop. 4.1.7(a)].
To prove that ∆k

1(i, j) has the desired property, it is useful to first verify that
Jk(i, j) is monotonically nondecreasing in i (or j) for fixed j (or i). This
is simple to show by induction or by arguing from first principles using the
fact that Jk(i, j) has a k-stage optimal cost interpretation. Next we use Eqs.
(4.113) and (4.116) to write

(β + ν)∆k+1
1 (i, j) = c1 − c2

+ µ1

(

Jk(i, j) − Jk

(

(i− 1)+, j + 1
))

+ µ2

(

Jk

(

i+ 1, (j − 1)+
)

− Jk(i, j)
)

+ λ
(

min
[

Jk(i+ 2, j), Jk(i+ 1, j + 1)
]

−min
[

Jk(i+ 1, j + 1), Jk(i, j + 2)
])

.

(4.117)

We now argue by induction. We have ∆0
1(i, j) = 0 for all (i, j). We assume

that ∆k
1(i, j) is monotonically nondecreasing in i for fixed j, and show that
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the same is true for ∆k+1
1 (i, j). This can be verified by showing that each of

the terms in the right-hand side of Eq. (4.117) is monotonically nondecreasing
in i for fixed j. Indeed, the first term is constant, and the second and third
terms are seen to be monotonically nondecreasing in i using the induction
hypothesis for the case where i, j > 0 and the earlier shown fact that Jk(i, j)
is monotonically nondecreasing in i for the case where i = 0 or j = 0. The
last term on the right-hand side of Eq. (4.117) can be written as

λ
(

Jk(i+ 1, j + 1) + min
[

Jk(i+ 2, j) − Jk(i+ 1, j + 1), 0
]

− Jk(i+ 1, j + 1)−min
[

0, Jk(i, j + 2) − Jk(i+ 1, j + 1)
])

= λ
(

min
[

0, Jk(i+ 1, j) − Jk(i+ 1, j + 1)
]

+max
[

0, Jk(i+ 1, j + 1)− Jk(i, j + 2)
])

= λ
(

min
[

0,∆k
1(i+ 1, j)

]

+max
[

0,∆k
1(i, j + 1)

])

.

Since ∆k
1(i+1, j) and ∆k

1(i, j+1) are monotonically nondecreasing in i by the
induction hypothesis, the same is true for the preceding expression. There-
fore, each of the terms on the right-hand side of Eq. (4.117) is monotonically
nondecreasing in i, and the induction proof is complete. Thus the existence
of an optimal threshold policy is established.

There are a number of generalizations of the routing problem of this
example that admit a similar analysis and for which there exist optimal poli-
cies of the threshold type. For example, suppose that there are additional
Poisson arrival processes with rates λ1 and λ2 at queues 1 and 2, respectively.
The existence of an optimal threshold policy can be shown by a nearly ver-
batim repetition of our analysis. A more substantive extension is obtained
when there is additional service capacity µ that can be switched at the times
of transition due to an arrival or service completion to serve a customer in
queue 1 or 2. Then we can similarly prove that it is optimal to route to queue
1 if and only if (i, j) ∈ X1 and to switch the additional service capacity to
queue 2 if and only if (i + 1, j + 1) ∈ X1, where X1 is given by Eq. (4.114)
and is characterized by a threshold function as in Eq. (4.115). For a proof of
this and further extensions, we refer to [Haj84], which generalizes and unifies
several earlier results on the subject.

4.6.5 Nonstationary and Periodic Problems

Our standing assumption so far has been that the problem involves a sta-
tionary system and a stationary cost per stage (except for the presence of
the discount factor). Problems with nonstationary system or cost per stage
arise occasionally in practice or in theoretical studies and are thus of some
interest. It turns out that such problems can be converted to stationary
ones by a simple reformulation. We can then obtain results analogous to
those obtained earlier for Consider a nonstationary system of the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . ,
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and a cost function of the form

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...,N−1

{

N−1
∑

k=0

αkgk
(

xk, µk(xk), wk

)

}

.

In these equations, for each k, xk belongs to a space Xk, uk belongs to
a space Uk and satisfies uk ∈ Uk(xk) for all xk ∈ Xk, and wk belongs
to a countable space Wk. The sets Xk, Uk, Uk(xk), Wk may differ from
one stage to the next. The random disturbances wk are characterized by
probabilities Pk(· | xk, uk), which depend on xk and uk as well as the
time index k. The set of admissible policies Π is the set of all sequences
π = {µ0, µ1, . . .} with µk : Xk 7→ Uk and µk(xk) ∈ Uk(xk) for all xk ∈ Xk

and k = 0, 1, . . . The functions gk : Xk × Uk ×Wk 7→ ℜ are given and are
assumed to satisfy one of the following three assumptions:

Assumption D′: We have α < 1, and the functions gk satisfy, for all
k = 0, 1, . . .,

∣

∣gk(xk, uk, wk)
∣

∣ ≤ M, for all (xk, uk, wk) ∈ Xk × Uk ×Wk,

where M is some scalar.

Assumption P′: The functions gk satisfy, for all k = 0, 1, . . .,

0 ≤ gk(xk, uk, wk), for all (xk, uk, wk) ∈ Xk × Uk ×Wk.

Assumption N′: The functions gk satisfy, for all k = 0, 1, . . .,

gk(xk, uk, wk) ≤ 0, for all (xk, uk, wk) ∈ Xk × Uk ×Wk.

We will refer to the problem formulated as the nonstationary problem
(NSP for short). We can get an idea on how the NSP can be converted to a
stationary problem by considering the special case where the state space is
the same for each stage (i.e., Xk = X for all k). We consider an augmented
state

x̃ = (x, k),
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where x ∈ X , and k is the time index. The new state space is X̃ = X×K,
where K denotes the set of nonnegative integers. The augmented system
evolves according to

(x, k) →
(

fk(x, uk, wk), k + 1
)

, (x, k) ∈ X̃.

Similarly, we can define a cost per stage as

g̃
(

(x, k), uk, wk

)

= gk(x, uk, wk), (x, k) ∈ X̃.

It is evident that the problem corresponding to the augmented system is
stationary. If we restrict attention to initial states x̃0 ∈ X ×{0}, it can be
seen that this stationary problem is equivalent to the NSP.

Let us now consider the more general case. To simplify notation, we
will assume that the state spaces Xi, i = 0, 1, . . ., the control spaces Ui,
i = 0, 1, . . ., and the disturbance spaces Wi, i = 0, 1, . . ., are all mutually
disjoint. This assumption does not involve a loss of generality since, if
necessary, we may relabel the elements of Xi, Ui, and Wi without affecting
the structure of the problem. Define now a new state space X , a new
control space U , and a new (countable) disturbance space W by

X = ∪∞
i=0Xi, U = ∪∞

i=0Ui, W = ∪∞
i=0Wi.

Introduce a new (stationary) system

x̃k+1 = f(x̃k, ũk, w̃k), k = 0, 1, . . . ,

where x̃k ∈ X , ũk ∈ U , w̃k ∈ W , and the system function f : X×U×W 7→
X is defined by

f(x̃, ũ, w̃) = fi(w̃, ũ, w̃), if x̃ ∈ Xi, ũ ∈ Ui, w̃ ∈ Wi, i = 0, 1, . . .

For triplets (x̃, ũ, w̃), where for some i = 0, 1, . . ., we have x̃ ∈ Xi, but ũ /∈
Ui or w̃ /∈ Wi, the definition of f is immaterial; any definition is adequate
for our purposes in view of the control constraints to be introduced. The
control constraint is taken to be ũ ∈ U(x̃) for all x̃ ∈ X , where U(·) is
defined by

U(x̃) = Ui(x̃), if x̃ ∈ Xi, i = 0, 1, . . .

The disturbance w̃ is characterized by probabilities P (w̃ | x̃, ũ) such that

P (w̃ ∈ Wi | x̃ ∈ Xi, ũ ∈ Ui) = 1, i = 0, 1, . . . ,

P (w̃ /∈ Wi | x̃ ∈ Xi, ũ ∈ Ui) = 0, i = 0, 1, . . .

Furthermore, for any wi ∈ Wi, xi ∈ Xi, ui ∈ Ui, i = 0, 1, . . ., we have

P (wi | xi, ui) = Pi(wi | xi, ui).
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We also introduce a new cost function

J̃π̃(x̃0) = lim
N→∞

E
wk

k=0,1,...,N−1

{

N−1
∑

k=0

αkg
(

x̃k, µk(x̃k), w̃k

)

}

,

where the (stationary) cost per stage g : X ×U ×W 7→ ℜ is defined for all
i = 0, 1, . . . , by

g(x̃, ũ, w̃) = gi(x̃, ũ, w̃), if x̃ ∈ Xi, ũ ∈ Ui, w̃ ∈ Wi.

For triplets (x̃, ũ, w̃), where for some i = 0, 1, . . ., we have x̃ ∈ Xi but ũ /∈ Ui

or w̃ /∈ Wi, any definition of g is adequate provided
∣

∣g(x̃, ũ, w̃)
∣

∣ ≤ M for
all (x̃, ũ, w̃) when Assumption D′ holds, 0 ≤ g(x̃, ũ, w̃) when P′ holds, and
g(x̃, ũ, w̃) ≤ 0 when N′ holds. The set of admissible policies Π̃ for the new
problem consists of all sequences π̃ = {µ̃0, µ̃1, . . .}, where µ̃k : X 7→ U and
µ̃k(x̃) ∈ U(x̃) for all x̃ ∈ X and k = 0, 1, . . ..

The construction given defines a problem that clearly fits the frame-
work of the infinite horizon total cost problem. We will refer to this problem
as the stationary problem (SP for short).

It is important to understand the nature of the intimate connection
between the NSP and the SP formulated here. Let π = {µ0, µ1 . . .} be an
admissible policy for the NSP. Also, let π̃ = {µ̃0, µ̃1, . . .} be an admissible
policy for the SP such that

µ̃i(x̃) = µi(x̃), if x̃ ∈ Xi, i = 0, 1, . . . (4.118)

Let x0 ∈ X0 be the initial state for the NSP and consider the same initial
state for the SP (i.e., x̃0 = x0 ∈ X0). Then the sequence of states {x̃i}
generated in the SP will satisfy x̃i ∈ Xi, i = 0, 1, . . ., with probability 1
(i.e., the system will move from the set X0 to the set X1, then to X2, etc.,
just as in the NSP). Furthermore, the probabilistic law of generation of
states and costs is identical in the NSP and the SP. As a result, it is easy
to see that for any admissible policies π and π̃ satisfying Eq. (4.118) and
initial states x0, x̃0 satisfying x0 = x̃0 ∈ X0, the sequence of generated
states in the NSP and the SP is the same (xi = x̃i, for all i) provided the
generated disturbances wi and w̃i are also the same for all i (wi = w̃i, for
all i). Furthermore, if π and π̃ satisfy Eq. (4.118), we have Jπ(x0) = J̃π(x̃0)
if x0 = x̃0 ∈ X0. Let us also consider the optimal cost functions for the
NSP and the SP:

J*(x0) = min
π∈Π

Jπ(x0), x0 ∈ X0,

J̃*(x̃0) = min
π̃∈Π̃

Jπ(x̃0), x̃0 ∈ X0.
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Then it follows from the construction of the SP that

J̃*(x̃0) = J̃*(x̃0, i), if x̃0 ∈ Xi, i = 0, 1, . . . ,

where, for all i = 0, 1, . . .,

J̃*(x̃0, i) = min
π∈Π

lim
N→∞

E
wk

k=0,1,...,N−1

{

N−1
∑

k=i

αk−igk
(

xk, µk(xk), wk

)

}

,

(4.119)
if x̃0 = xi ∈ Xi. Note that in this equation, the right-hand side is defined
in terms of the data of the NSP. As a special case of this equation, we
obtain

J̃*(x̃0) = J̃*(x̃0, 0) = J*(x0), if x̃0 = x0 ∈ X0.

Thus the optimal cost function J* of the NSP can be obtained from the
optimal cost function J̃* of the SP . Furthermore, if π̃∗ = {µ̃∗

0, µ̃
∗
1, . . .} is an

optimal policy for the SP, then the policy π∗ = {µ∗
0, µ

∗
1, . . .} defined by

µ∗
i (xi) = µ̃∗

i (xi), for all xi ∈ Xi, i = 0, 1, . . . , (4.120)

is an optimal policy for the NSP. Thus optimal policies for the SP yield
optimal policies for the NSP via Eq. (4.120). Another point to be noted is
that if Assumption D′ (P ′, N ′) is satisfied for the NSP , then Assumption
D (P,N) introduced earlier in this chapter is satisfied for the SP .

These observations show that one may analyze the NSP by means of
the SP. Every result given in the preceding sections when applied to the
SP yields a corresponding result for the NSP. We will just provide the form
of the optimality equation for the NSP in the following proposition.

Proposition 4.6.2: Under Assumption D′ (P′, N′), there holds

J*(x0) = J̃*(x0, 0), x0 ∈ X0,

where for all i = 0, 1, . . ., the functions J̃*(·, i) map Xi into ℜ ([0,∞],
[−∞, 0]), are given by Eq. (4.119), and satisfy for all xi ∈ Xi and
i = 0, 1, . . .,

J̃*(xi, i) = min
ui∈Ui(xi)

E
wi

{

gi(xi, ui, wi) + αJ̃*
(

fi(xi, ui, wi), i+ 1
)}

.

(4.121)
Under Assumption D′ the functions J̃*(·, i), i = 0, 1, . . ., are the unique
bounded solutions of the set of equations Eq. (4.121). Furthermore,
under Assumption D′ or P′, if µ∗

i (xi) ∈ Ui(xi) attains the minimum
in Eq. (4.121) for all xi ∈ Xi and i, then the policy π∗ = {µ∗

0, µ
∗
1, . . .}

is optimal for the NSP.
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Periodic Problems

Assume within the framework of the NSP that there exists an integer p ≥ 2
(called the period) such that for all integers i and j with

|i− j| = mp, m = 1, 2, . . . ,

we have

Xi = Xj , Ui = Uj , Wi = Wj , Ui(·) = Uj(·),

fi = fj , gi = gj, Pi(· | x, j) = Pj(· | x, u), (x, u) ∈ Xi × Ui.

We assume that the spaces Xi, Ui, Wi, i = 0, 1, . . . , p − 1, are mutually
disjoint. We define new state, control, and disturbance spaces by

X = ∪p−1
i=0Xi, U = ∪p−1

i=0Ui, W = ∪p−1
i=0Wi.

The optimality equation for the equivalent stationary problem reduces to
the system of p equations

J̃*(x0, 0) = min
u0∈U0(x0)

E
w0

{

g0(x0, u0, w0) + αJ̃*
(

f0(x0, u0, w0), 1
)}

,

J̃*(x1, 1) = min
u1∈U1(x1)

E
w1

{

g(x1, u1, w1) + αJ̃*
(

f1(x1, u1, w1), 2
)}

,

...

J̃*
(

xp−1, p− 1
)

= min
up−1∈Up−1(xp−1)

E
wp−1

{

gp−1(xp−1, up−1, wp−1)

+ αJ̃*
(

fp−1(xp−1, up−1, wp−1), 0
)}

.

These equations may be used to obtain (under Assumption D′ or P′) a
periodic policy of the form {µ∗

0, . . . , µ
∗
p−1, µ

∗
0, . . . , µ

∗
p−1, . . .} whenever the

minimum of the right-hand side is attained for all xi, i = 0, 1, . . . , p − 1.
When all spaces involved are finite and α < 1, an optimal policy may be
found by means of the algorithms of Chapter 2, appropriately adapted to
the corresponding SP.

4.7 NOTES, SOURCES, AND EXERCISES

Section 4.1: Undiscounted problems and discounted problems with un-
bounded cost per stage were first analyzed systematically by Blackwell
[Bla65], Dubins and Savage [DuS65], and Strauch [Str66] (who was Black-
well’s PhD student). The sufficient conditions for convergence of the VI
method under Assumption P [cf. Props. 4.1.7(a) and 4.1.8], together with
necessary conditions for convergence were derived by the author in [Ber75],
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[Ber77]. Related analysis also appeared in the papers by Schal [Sch75] and
Whittle [Whi80]. The convergence of VI from above condition of Prop.
4.1.9 was obtained by Yu and Bertsekas [YuB15], as part of broader inves-
tigation of infinite horizon DP problems defined in Borel spaces. Problems
involving convexity assumptions are analyzed in the author’s [Ber73b]. The
optimistic PI convergence analysis under Assumption N was given in the
author’s monograph [Ber18] (and its 2022 3rd edition), Chapter 4, which
also proposed a related method based on λ-policy iteration (see Exercise
6.13 in Chapter 3).

The paper by Blackwell [Bla65] also introduced the Borel space frame-
work to deal with the issues that arise when the disturbance space is un-
countably infinite, so that measurability restrictions must be placed on the
policies (see Appendix A). These issues were also addressed in a number of
subsequent works, including the monographs by Hinderer [Hin70], Stiebel
[Str75], Bertsekas and Shreve [BeS78], Dynkin and Yushkevich [DuY79],
and Hernandez-Lerma [Her89], and the papers by Strauch [Str66], and
Blackwell, Freedman, and Orkin [BFO74]. The monograph [BeS78] pro-
vides an extensive treatment (summarized in Appendix A), based on the
use of universally measurable policies.

A question left open within the Borel and universally measurable
frameworks is the validity of PI [it is not guaranteed that the policy im-
provement operation can produce a universally measurable policy, even if
the minimum is attained for all x ∈ X when computing (TJµ)(x), because
Jµ may be lower semianalytic; see Appendix A]. The paper by Yu and
Bertsekas [YuB15] resolves this difficulty by using a combined VI and PI
approach that bears some similarity with the approach of Section 2.6.3.
This paper also derived a number of other results relating to VI and PI
within a Borel and a universal measurability framework, including the re-
sult regarding convergence of VI from above under Assumption P, given in
Prop. 4.1.9.

The analysis of Section 4.1.4, which converts a finite-state finite-
control stochastic control problem under Assumption P to an equivalent
SSP, is joint work of the author with H. Yu. See the paper [BeY16], which
also considers the finite-state infinite-control case under Assumption P,
where the control constraint set is assumed to satisfy a compactness condi-
tion like the one of Prop. 4.1.8. Example 4.1.4 illustrates what may happen
under these circumstances.

We have bypassed a number of complex theoretical issues under As-
sumptions P and N, which historically have played an important role and
relate to stationary policies. The main question is to what extent is it pos-
sible to restrict attention to such policies. Much theoretical work has been
done on this question (Bertsekas and Shreve [BeS79], Blackwell [Bla65],
Blackwell [Bla70], Dubins and Savage [DuS65], Feinberg [Fei78], [Fei92a],
[Fei92b], Ornstein [Orn69]), and some aspects are still open. Suppose, for
example, that we are given an ǫ > 0. One issue is whether there exists an
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ǫ-optimal stationary policy, i.e., a stationary policy µ such that

Jµ(x) ≤ J*(x) + ǫ, for all x ∈ X with J*(x) > −∞,

Jµ(x) ≤ −1

ǫ
, for all x ∈ X with J*(x) = −∞.

The answer is positive under any one of the following conditions:

1. Assumption P holds and α < 1 (see Exercise 4.5).

2. Assumption N holds, X is a finite set, α = 1, and J*(x) > −∞ for all
x ∈ X (see Exercise 4.6 or Blackwell [Bla65], [Bla70], and Ornstein
[Orn69]).

3. Assumption N holds, X is a countable set, α = 1, and the problem is
deterministic (see Bertsekas and Shreve [BeS79]).

The answer can be negative under any one of the following conditions:

1. Assumption P holds and α = 1 (see Exercise 4.5).

2. Assumption N holds and α < 1 (see Exercise 4.6, or Bertsekas and
Shreve [BeS79]).

The existence of an ǫ-optimal stationary policy for SSP problems with a
finite state space, but under somewhat different assumptions than the ones
of Section 3.1, is analyzed by Feinberg [Fei92b].

Another issue is whether one can confine the search for an optimal
policy within the class of stationary policies, i.e., whether there exists an
optimal stationary policy when there exists an optimal policy for each
initial state. This is true under Assumption P (see Exercise 4.10). It is
also true (but very hard to prove) under Assumption N if J*(x) > −∞ for
all x ∈ X , α = 1, and the disturbance space W is countable (Blackwell
[Bla70], Dubins and Savage [DuS65], Ornstein [Orn69]). Simple two-state
examples can be constructed showing that the result fails to hold if α = 1
and J*(x) = −∞ for some state x (see Exercises 4.11 and 4.12). However,
these examples rely on the presence of a stochastic element in the problem.
If the problem is deterministic, stronger results are available; one can find
an optimal stationary policy if there exists an optimal policy at each initial
state and either α = 1 or α < 1 and J*(x) > −∞ for all x ∈ X . These
results also require a difficult proof (Bertsekas and Shreve [BeS79]).

Section 4.2: The proposal of PI for infinite horizon linear-quadratic prob-
lems (cf. Section 4.3) is due to Kleinman [Kle68]. Using simulation-based
PI for adaptive control of linear-quadratic models was first proposed by
Bradtke, Ydstie, and Barto [BYB94]. There has been a lot of followup
work based on this idea.

Section 4.3: There has been much research on VI and PI algorithms for
discrete-time deterministic optimal control. For a selective list of recent ref-
erences, which themselves contain extensive lists of other references, see the
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book by , the papers by Jiang and Jiang [JiJ13], [JiJ14], Heydari [Hey14a],
[Hey14b], Liu and Wei [LiW13], Wei et al. [WWL14], the survey papers in
the edited volumes by Si et al. [SBP04], and Lewis and Liu [LeL13], and
the special issue edited by Lewis, Liu, and Lendaris [LLL08]. Some of these
works relate to continuous-time problems as well, and in their treatment
of algorithmic convergence, typically assume that X and U are Euclidean
spaces, as well as continuity and other conditions on g, special structure of
the system, etc. Important antecedents of these works, which deal with PI
algorithms for deterministic continuous-time optimal control are the papers
by Rekasius [Rek64], and Saridis and Lee [SaL79], and the thesis by Beard
[Bea95] (supervised by Saridis).

The results of Section 4.3 on deterministic optimal control to a ter-
minal set of states were given in the author’s paper [Ber15b]. The line of
analysis of this section is inspired by extensions of the abstract DP theory
given in Sections 1.6 and 2.6 for contractive problems. Central in this anal-
ysis are notions of regularity, which extend the notion of a proper policy in
SSP problems, and were developed in the author’s abstract DP monograph
[Ber18] and the paper [Ber15a].

Let us describe the regularity idea briefly, as given in [Ber15a], and
its connection to the analysis of Section 4.3. Given a set of functions
S ∈ E+(X), we say that a collection C of policy-state pairs (π, x0), with
π ∈ Π and x0 ∈ X , is S-regular if for all (π, x0) ∈ C and J ∈ S, we have

Jπ(x0) = lim
N→∞

{

J(xN ) +

N−1
∑

k=0

g
(

xk, µk(xk)
)

}

.

In words, for all (π, x0) ∈ C, Jπ(x0) can be obtained in the limit by VI
starting from any J ∈ S. The favorable properties with respect to VI of an
S-regular collection C can be translated into interesting properties relating
to solutions of Bellman’s equation and convergence of VI. In particular, the
optimal cost function over the set of policies

{

π | (π, x) ∈ C
}

,

J∗
C (x) = min

{π | (π,x)∈C}
Jπ(x), x ∈ X,

under appropriate problem-dependent assumptions, is the unique solution
of Bellman’s equation within the set

{

J ∈ S | J ≥ J∗
C

}

,

and can be obtained by VI starting from any J within that set.
Within the deterministic optimal control context of Section 4.3, it

works well to choose C to be the set of all (π, x) such that x ∈ Xf and
π is terminating starting from x, and to choose S to be J , as defined by
Eq. (4.34). Then, in view of Assumption 4.2.1, we have J∗

C = J∗, and the



Sec. 4.7 Notes, Sources, and Exercises 337

favorable properties of J∗
C are shared by J∗. For other types of problems

different choices of C may be appropriate, and corresponding results relating
to the uniqueness of solutions of Bellman’s equation and the validity of VI
and PI may be obtained; see [Ber15a], [Ber17c], and [Ber17d].

Section 4.4: The SSP material and the perturbation-based analysis of
Section 4.4 is joint work of the author with H. Yu. Together with the
connection of SSP with finite state stochastic control problems under As-
sumption P developed in Section 4.1.4, it was given in the paper [BeY16].
This paper develops the theory in a more general setting where the con-
trol space may be infinite, but the compactness conditions given in Section
3.2 are assumed. The finite-state finite-control version of the SSP was
analyzed using linear programming methods by Kallenberg [Kal83], who
proved Prop. 4.4.6. The extension of the analysis of this section to infinite-
spaces SSP problems is complicated, but the case where g ≥ 0 is more
amenable to analysis (see the author’s papers [Ber17c] and [Ber17d]).

A class of problems that includes the positive and negative cost prob-
lems of Section 4.1 and the SSP problem of Section 4.4, is obtained when
we allow both positive and negative transition costs, but without explicitly
assuming a termination state. The survey by Feinberg [Fei02] overviews
the theory of these problems, and the paper by Yu [Yu14] addresses the as-
sociated intricacies of the convergence of VI; see also the theory of positive
bounded MDP discussed in Section 7.2 of [Put94]. These works require
certain cost function convergence assumptions, which may not be satisfied
in some prominent SSP contexts. In particular, when specialized to deter-
ministic shortest path problems, these assumptions require that each zero
length cycle consists of zero length transitions.

Section 4.5: The affine monotonic model of Section 4.5 was introduced
in more general form (infinite state space) in the 2013 first edition of the
author’s abstract DP monograph [Ber18]. The exponentiated cost special
case of the affine monotonic model has received considerable attention;
see Denardo and Rothblum [DeR79], [DeR06], who use a different line of
analysis based on linear programming, and Patek [Pat01], who considers
the monotone increasing case where T J̄ ≥ J̄ .

A general analysis of (possibly infinite-state) shortest path-type prob-
lems, which relies on notions of regularity that extend the notion of a
proper policy, has been developed in Chapter 3 of the author’s abstract
DP monograph [Ber18]. Problems that admit such an analysis were called
semicontractive in that monograph, in view of the fact that for some poli-
cies µ (such as the ones that are proper, contractive, etc) the mapping Tµ

is a contraction, while for other policies (such as improper, noncontractive,
etc) it is not. Aside from SSP and affine monotonic, semicontractive models
include shortest path-type minimax problems; see Bertsekas [Ber14].

Section 4.6: The material of Sections 4.6.1, 4.6.2, and 4.6.5 is classi-
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cal, and dates to the early days of DP. The material on the gambling
problem of Section 4.6.3 is taken from the important work of Dubins and
Savage [DuS65]. A surprising property of the optimal reward function J*

for this problem has been shown by Billingsley [Bil83]: J* is almost ev-
erywhere differentiable with derivative zero, yet it is strictly increasing,
taking values that range from 0 to 1. Control of queueing systems and
problems of priority assignment and routing (Section 4.6.4) have been re-
searched extensively. We give some representative references: Ayoun and
Rosberg [AyR91], Baras, Dorsey, and Makowski [BDM83], Bhattacharya
and Ephremides [BhE91], Courcoubetis and Varaiya [CoV84], Cruz and
Chuah [CrC91], Ephremides, Varaiya, and Walrand [EVW80], Ephremides
and Verd’u [EpV89], Hajek [Haj84], Harrison [Har75a], [Har75b], Lin and
Kumar [LiK84], Pattipati and Kleinman [PaK81], Stidham and Prabhu
[StP74], Stidham andWeber [StW93], Suk and Cassandras [SuC91], Towsley,
Sparaggis, and Cassandras [TSC92], Tsitsiklis [Tsi84], Viniotis and Ephre-
mides [ViE88], and Walrand [Wal88].

E X E R C I S E S

4.1 (VI Convergence Counterexample Under P)

Let X = [0,∞) and U = U(x) = (0,∞) be the state and control spaces, respec-
tively, let the system equation be

xk+1 =
(

2

α

)

xk + uk, k = 0, 1, . . . ,

where α ∈ (0, 2), and let
g(xk, uk) = xk + uk

be the cost per stage. Show that for this deterministic problem, Assumption P
holds and that J∗(x) = ∞ for all x ∈ X, but (T kJ0)(0) = 0 for all k [J0 is the
zero function, J0(x) = 0, for all x ∈ X].

4.2 (Existence of an Optimal Stationary Policy Under P)

Let Assumption P hold and consider the finite-state case X = {1, . . . , n}, xk+1 =
wk. The mapping T is represented as

(TJ)(i) = min
u∈U(i)

[

g(i, u) + α

n
∑

j=1

pij(u)J(j)

]

, i = 1, . . . , n,
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where pij(u) denotes the transition probability that the next state will be j when
the current state is i and control u is applied. Assume that the sets U(i) are
compact subsets of ℜn for all i, and that pij(u) and g(i, u) are continuous on
U(i) for all i and j. Use Prop. 4.1.8 to show that limk→∞(T kJ0)(i) = J∗(i),
where J0 is the zero vector, and that there exists an optimal stationary policy.

4.3 (Existence of an Optimal Stationary Policy Under N)

This exercise explores further Example 4.6.4, which involves a deterministic stop-
ping problem where Assumption N holds, and an optimal policy does not exist,
even though only two controls are available at each state (stop and continue).
The state space is X = {1, 2, . . .}. Continuation from state i leads to state i+ 1
with certainty and no cost, while the stopping cost is −1+ (1/i), so that there is
an incentive to delay stopping at every state.

(a) Verify that J∗(i) = −1 for all i, but there is no policy (stationary or not)
that attains the optimal cost starting from i.

(b) Let µ be the policy that stops at every state. Show that the next policy µ
generated by PI is to continue at every state, and that we have

Jµ(i) = 0 > −1 +
1

i
= Jµ(i), i = 1, 2, . . . .

Moreover, the method oscillates between the policies µ and µ, none of which
is optimal.

4.4 (Error Bound Under P)

Under Assumption P, let µ be such that for all x ∈ X, µ(x) ∈ U(x) and

(TµJ
∗)(x) ≤ (TJ∗)(x) + ǫ,

where ǫ is some positive scalar. Show that, if α < 1,

Jµ(x) ≤ J∗(x) +
ǫ

1− α
, x ∈ X.

Hint : Show that (T k
µJ

∗)(x) ≤ J∗(x) +
∑k−1

i=0
αiǫ.

4.5 (Existence of ǫ-Optimal Policies Under P)

Under Assumption P, show that, given ǫ > 0, there exists a policy π ∈ Π such
that Jπ(x) ≤ J∗(x) + ǫ for all x ∈ X, and that for α < 1, π can be taken
stationary. Give an example where α = 1 and for each stationary policy µ we
have Jµ(x) = ∞, while J∗(x) = 0 for all x. Hint : See the proof of Prop. 4.1.1.
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4.6 (Existence of ǫ-Optimal Policies Under N)

Let Assumption N hold and assume that J∗(x) > −∞ for all x ∈ X.

(a) Show that if X is a finite set and α ≤ 1, then given ǫ > 0, there exists a
policy π ∈ Π such that Jπ(x) ≤ J∗(x)+ ǫ for all x ∈ X, and that for α < 1
π can be taken stationary (cf. the result of Exercise 4.5). Hint : Consider
an integer N such that the N-stage optimal cost JN satisfies

JN (x) ≤ J∗(x) + ǫ, x ∈ X.

(b) Construct a counterexample to show that the result of part (a) can fail to
hold if X is countable and α < 1. Hint : Consider a stopping problem with
X = {0, 1, . . .}, and a stopping cost at state i ≥ 0 equal to 1 − (1/α)i. If
we do not stop at state i, we move to state i+ 1 at no cost. See [BeS79],
p. 609.

4.7

Under Assumption P or N, show that if α < 1 and J ′ : X 7→ ℜ is a bounded

function satisfying J ′ = TJ ′, then J ′ = J∗. Hint : Under P, let r be a scalar such
that J∗ + re ≥ J ′. Argue that J∗ ≥ J ′ and use Prop. 4.1.3(a).

4.8

We want to find a scalar sequence {u0, u1, . . .} that satisfies
∑∞

k=0
uk ≤ c, uk ≥ 0,

for all k, and maximizes
∑∞

k=0
g(uk), where c > 0 and g(u) ≥ 0 for all u ≥ 0,

g(0) = 0. Assume that g is monotonically nondecreasing on [0,∞). Show that the
optimal value of the problem is J∗(c), where J∗ is a monotonically nondecreasing
function on [0,∞) satisfying J∗(0) = 0 and

J∗(x) = max
0≤u≤x

{

g(u) + J∗(x− u)
}

, x ∈ [0,∞).

4.9

Let Assumption P hold and assume that π∗ = {µ∗
0 , µ

∗
1, . . .} ∈ Π satisfies J∗ =

Tµ∗
k
J∗ for all k. Show that π∗ is optimal, i.e., Jπ∗ = J∗.

4.10

Under Assumption P, show that if there exists an optimal policy (a policy π∗ ∈ Π
such that Jπ∗ = J∗), then there exists an optimal stationary policy.
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4.11

Use the following counterexample to show that the result of Exercise 4.10 may fail
to hold under Assumption N if J∗(x) = −∞ for some x ∈ X. LetX = D = {0, 1},
f(x, u,w) = w, g(x, u, w) = u, U(0) = (−∞, 0], U(1) = {0}, p(w = 0 | x =
0, u) = 1

2
, and p(w = 1 | x = 1, u) = 1. Show that J∗(0) = −∞, J∗(1) = 0 and

that the admissible nonstationary policy {µ∗
0 , µ

∗
1, . . .} with µ∗

k(0) = −(2/α)k is
optimal. Show that every stationary policy µ satisfies Jµ(0) =

(

2/(2 − α)
)

µ(0),
Jµ(1) = 0 (see [Bla70], [DuS65], and [Orn69] for related analysis).

4.12 (The Blackmailer’s Dilemma)

Consider Example 3.2.1. Here, there are two states, state 1 and a termination
state t. At state 1, we can choose a control u with 0 < u ≤ 1; we then move to
state t at no cost with probability p(u), and stay in state 1 at a cost −u with
probability 1− p(u).

(a) Let p(u) = u2. For this case it was shown in Example 3.2.1 that the
optimal costs are J∗(1) = −∞ and J∗(t) = 0. Furthermore, it was shown
that there is no optimal stationary policy, although there is an optimal
nonstationary policy. Find the set of solutions to Bellman’s equation and
verify the conclusion of Prop. 4.1.3(b).

(b) Let p(u) = u. Find the set of solutions to Bellman’s equation and use Prop.
4.1.3(b) to show that the optimal costs are J∗(1) = −1 and J∗(t) = 0. Show
that there is no stationary optimal policy.

4.13 (Linear Systems and Discounted Positive Cost)

Consider a deterministic problem involving a linear system

xk+1 = Axk +Buk, k = 0, 1, . . . ,

where the pair (A,B) is controllable and xk ∈ ℜn, uk ∈ ℜm. Assume no con-
straints on the control and a cost per stage g satisfying

0 ≤ g(x, u), (x, u) ∈ ℜn × ℜm.

Assume furthermore that g is continuous in x and u, and that g(xn, un) → ∞ if
{xn} is bounded and ‖un‖ → ∞.

(a) Show that for a discount factor α < 1, the optimal cost satisfies 0 ≤ J∗(x) <
∞, for all x ∈ ℜn. Furthermore, there exists an optimal stationary policy
and

lim
k→∞

(T kJ0)(x) = J∗(x), x ∈ ℜn.

(b) Show that the same is true, except perhaps for J∗(x) < ∞, when the
system is of the form xk+1 = f(xk, uk), with f : ℜn × ℜm 7→ ℜn being a
continuous function.
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(c) Prove the same results assuming that the control is constrained to lie in
a compact set U ∈ ℜm [U(x) = U for all x] in place of the assumption
g(xn, un) → ∞ if {xn} is bounded and ‖un‖ → ∞. Hint : Show that T kJ0

is real valued and continuous for every k, and use Prop. 4.1.8.

4.14 (Periodic Linear-Quadratic Problems)

Consider the linear system

xk+1 = Akxk +Bkuk + wk, k = 0, 1, . . . ,

and the quadratic cost

Jπ(x0) = lim
N→∞

E
wk

k=0,...N−1

{

N−1
∑

k=0

αk(x′
kQkxk + u′

kRkuk)

}

,

where the matrices have appropriate dimensions, Qk and Rk are positive semidef-
inite and positive definite symmetric, respectively, for all k, and 0 < α < 1.
Assume that the system and cost are periodic with period p (cf. Section 4.7),
that the controls are unconstrained, and that the disturbances are independent,
and have zero mean and finite covariance. Assume further that the following
(controllability) condition is in effect.

For any state x0, there exists a finite sequence of controls {u0, u1, . . . , ur}
such that xr+1 = 0, where xr+1 is generated by

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , r.

Show that there is an optimal periodic policy π∗ of the form

π∗ = {µ∗
0 , µ

∗
1, . . . , µ

∗
p−1, µ

∗
0, µ

∗
1 , . . . , µ

∗
p−1, . . .},

where µ∗
0, µ

∗
1, . . . , µ

∗
p−1 are given by

µ∗
i (x) = −α(αB′

iKi+1Bi +Ri)
−1B′

iKi+1Aix, i = 0, . . . , p− 2,

µ∗
p−1(x) = −α(αB′

p−1K0Bp−1 +Rp−1)
−1B′

p−1K0Ap−1x,

and the matrices K0,K1, . . . ,Kp−1 satisfy the coupled set of p algebraic Riccati
equations given for i = 0, 1, . . . , p− 1 by

Ki = A′
i

(

αKi+1 − α2Ki+1Bi(αB
′
iKi+1Bi +Ri)

−1B′
iKi+1Ai

)

+Qi,

with

Kp = K0.
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4.15 (Linear-Quadratic Problems – Imperfect State Information)

Consider the linear-quadratic problem of Section 4.3 with the difference that the
controller, instead of having perfect state information, has access to measure-
ments of the form

zk = Cxk + vk, k = 0, 1, . . .

As in Section 4.2 of Vol. I, the disturbances vk are independent and have iden-
tical statistics, zero mean, and finite covariance matrix. Assume that for every
admissible policy π the matrices

E
{(

xk − E{xk | Ik}
)(

xk −E{xk | Ik}
)′ | π

}

are uniformly bounded over k, where Ik is the information vector defined in
Section 4.1 of Vol. I. Show that the stationary policy µ∗ given by

µ∗(Ik) = −α(αB′KB +R)−1B′KAE{xk | Ik}, for all Ik, k = 0, 1, . . .

is optimal. Show also that the same is true if wk and vk are nonstationary with
zero mean and covariance matrices that are uniformly bounded over k.

4.16 (PI for Linear-Quadratic Problems)

Consider the problem of Section 4.2 and let L0 be an m×n matrix such that the
matrix (A+BL0) has eigenvalues strictly within the unit circle.

(a) Show that the cost corresponding to the stationary policy µ0, where µ0(x) =
L0x is of the form

Jµ0 (x) = x′K0x+ constant,

where K0 is a positive semidefinite symmetric matrix satisfying the (linear)
equation

K0 = α(A+BL0)
′K0(A+BL0) +Q+ L′

0RL0.

(b) Let µ1(x) attain the minimum for each x in the expression

min
u

{

u′Ru+ α(Ax+Bu)′K0(Ax+ bu)
}

.

Show that for all x we have

Jµ1(x) = x′K1x+ constant ≤ Jµ0(x),

where K1 is some positive semidefinite symmetric matrix.

(c) Show that the PI process described in parts (a) and (b) yields a sequence
{Kk} such that

Kk → K,

where K is the optimal cost matrix of the problem.
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4.17 (An Affine Monotonic Problem where J∗ does not
Satisfy Bellman’s Equation)

Consider the shortest path problem of Example 3.6.3 and the policy µ illustrated
in Fig. 3.6.2, but assume that the cost function is the limit, as N → ∞, of the
expected value of the exponential of the N-stage sum of costs [cf. Eqs. (4.80) and
(4.81)].

(a) Show that

Jµ(0) =
1

2
(e1 + e−1), Jµ(2) = Jµ(5) = e1.

(b) Verify that the Bellman equation for Jµ at state 0 is

Jµ(0) =
1

2

(

Jµ(2) + Jµ(5)
)

,

and that it is violated.

(c) Introduce a high cost terminating action that leads to t from every other
state, and verify that in the resulting problem, the optimal cost Ĵ over
contractive policies satisfies Ĵ = T Ĵ .

4.18 (Periodic Inventory Control Problems)

In the inventory control problem of Section 4.3, consider the case where the
statistics of the demands wk, the prices ck, and the holding and the shortage
costs are periodic with period p. Show that there exists an optimal periodic
policy of the form π∗ = {µ∗

0 , . . . , µ
∗
p−1, µ

∗
0, . . . , µ

∗
p−1, . . .},

µ∗
i (x) =

{

S∗
i − x if x ≤ S∗

i ,
0 if otherwise,

i = 0, 1, . . . , p− 1,

where S∗
0 , . . . , S

∗
p−1 are appropriate scalars.

4.19 [HeS84]

Show that the critical level S∗ for the inventory problem with zero fixed cost of
Section 4.3 minimizes (1− α)cy + L(y) over y. Hint : Show that the cost can be
expressed as

Jπ(x0) = E

{

∞
∑

k=0

αk
(

(1− α)cyk + L(yk)
)

+
cα

1− α
E{w} − cx0

}

,

where yk = xk + µk(xk).
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4.20

Consider a machine that may break down and can be repaired. When it operates
over a time unit, it costs −1 (i.e., it produces a benefit of 1 unit), and it may
break down with probability 0.1. When it is in the breakdown mode, it may be
repaired with an effort u. The probability of making it operative over one time
unit is then u, and the cost is Cu2. Determine the optimal repair effort over an
infinite time horizon with discount factor α < 1.

4.21

Let z0, z1, . . . be a sequence of independent and identically distributed random
variables taking values on a finite set Z. We know that the probability distribu-
tion of the zk’s is one out of n distributions f1, . . . , fn, and we are trying to decide
which distribution is the correct one. At each time k after observing z1, . . . , zk,
we may either stop the observations and accept one of the n distributions as cor-
rect, or take another observation at a cost c > 0. The cost for accepting fi given
that fj is correct is Lij , i, j = 1, . . . , n. We assume Lij > 0 for i 6= j, Lii = 0,
i = 1, . . . , n. The a priori distribution of f1, . . . , fn is denoted

P0 = {p10, p20, . . . , pn0 }, pi0 ≥ 0,

n
∑

i=1

pi0 = 1.

Show that the optimal cost J∗(P0) is a concave function of P0. Characterize the
optimal acceptance regions and show how they can be obtained in the limit by
means of a VI method.

4.22 (Gambling Strategies for Favorable Games)

A gambler plays a game such as the one of Section 4.5, but where the probability
of winning p satisfies 1/2 ≤ p < 1. His objective is to reach a final fortune n,
where n is an integer with n ≥ 2. His initial fortune is an integer i with 0 < i < n,
and his stake at time k can take only integer values uk satisfying 0 ≤ uk ≤ xk,
0 ≤ uk ≤ n− xk, where xk is his fortune at time k. Show that the strategy that
always stakes one unit is optimal [i.e., µ∗(x) = 1 for all integers x with 0 < x < n
is optimal]. Hint : Show that if p ∈ (1/2, 1),

Jµ∗(i) =

[

(

1− p

p

)i

− 1

]

[(

1− p

p

)n

− 1

]−1

, 0 ≤ i ≤ n,

and if p = 1/2,

Jµ∗ (i) =
i

n
, 0 ≤ i ≤ n,

(or see [Ash70], p. 182, for a proof). Then use the sufficiency condition of Prop.
4.1.6.
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4.23 [Sch81]

Consider a network of n queues whereby a customer at queue i upon completion
of service is routed to queue j with probability pij , and exits the network with
probability 1−

∑

j
pij . For each queue i denote:

ri: the external customer arrival rate,

1
µi
: the average customer service time,

λi: the customer departure rate,

ai: the total customer arrival rate (sum of external rate and departure rates
from upstream queues weighted by the corresponding probabilities).

We have

ai = ri +

n
∑

j=1

λjpji, for all i,

and we assume that any portion of the arrival rate ai in excess of the service rate
µi is lost; so the departure rate at queue i satisfies

λi = min[µi, ai] = min

[

µi, ri +

n
∑

j=1

λjpji

]

.

Assume that ri > 0 for at least one i, and that for every queue i1 with ri1 > 0,
there is a queue i with 1 −

∑

j
pij > 0, and a sequence i1, i2, . . . , ik, i such that

pi1i2 > 0, . . . , piki > 0. Show that the departure rates λi satisfying the preceding
equations are unique and can be found by VI or PI. Hint : This problem does not
quite fit our framework because we may have

∑

j
pji > 1 for some i. However, it

is possible to carry out an analysis based on m-stage contraction mappings.

4.24 (Infinite Time Reachability [Ber71], [Ber72])

Consider the stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

where the disturbance space W is an arbitrary (not necessarily countable) set.
The disturbances wk can take values in a subset W (xk, uk) of W that may de-
pend on xk and uk. This problem deals with the following question: Given a
nonempty subset X of the state space S, under what conditions does there exist
an admissible policy that keeps the state of the (closed-loop) system

xk+1 = f
(

xk, µk(xk), wk

)

(4.122)

in the set X for all k and all possible values wk ∈ W
(

xk, µk(xk)
)

, i.e.,

xk ∈ X, for all wk ∈ W
(

xk, µk(xk)
)

, k = 0, 1, . . . (4.123)
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The set X is said to be infinitely reachable if there exists an admissible
policy {µ0, µ1, . . .} and some initial state x0 ∈ X for which the above relations
are satisfied. It is said to be strongly reachable if there exists an admissible policy
{µ0, µ1, . . .} such that for all initial states x0 ∈ X the above relations are satisfied.

Consider the function R mapping any subset Z of the state space S into a
subset R(Z) of S defined by

R(Z) =
{

x | for some u ∈ U(x), f(x, u,w) ∈ Z, for all w ∈ W (x, u)
}

∩ Z.

(a) Show that the set X is strongly reachable if and only if R(X) = X.

(b) Given X, consider the set X∗ defined as follows: x0 ∈ X∗ if and only if
x0 ∈ X and there exists an admissible policy {µ0, µ1, . . .} such that that
Eqs. (4.122) and (4.123) are satisfied when x0 is taken as the initial state
of the system. Show that a set X is infinitely reachable if and only if it
contains a nonempty strongly reachable set. Furthermore, the largest such
set is X∗ in the sense that X∗ is strongly reachable whenever nonempty,
and if X̃ ∈ X is another strongly reachable set, then X̃ ⊂ X∗.

(c) Show that if X is infinitely reachable, there exists an admissible stationary
policy µ such that if the initial state x0 belongs to X∗, then all subsequent
states of the closed-loop system xk+1 = f

(

xk, µ(xk), wk

)

are guaranteed to
belong to X∗.

(d) Given X, consider the sets Rk(X), k = 1, 2, . . ., where Rk(X) denotes the
set obtained after k applications of the mapping R on X. Show that

X∗ ⊂ ∩∞
k=1R

k(X).

(e) Given X, consider for each x ∈ X and k = 1, 2, . . . the set

Uk(x) =
{

u | f(x, u, w) ∈ Rk(X) for all w ∈ W (x, u)
}

.

Show that, if there exists an index k such that for all x ∈ X and k ≥ k the
set Uk(x) is a compact subset of a Euclidean space, then X∗ = ∩∞

k=1R
k(X).

4.25 (Infinite Time Reachability for Linear Systems [Ber71])

Consider the linear stationary system

xk+1 = Axk +Buk +Gwk,

where xk ∈ ℜn, uk ∈ ℜm, and wk ∈ ℜr, and the matrices A, B, and G are known
and have appropriate dimensions. The matrix A is assumed invertible. The
controls uk and the disturbances wk are restricted to take values in the ellipsoids
U = {u | u′Ru ≤ 1} and W = {w | w′Qw ≤ 1}, respectively, where R and Q
are positive definite symmetric matrices of appropriate dimensions. Show that
in order for the ellipsoid X = {x | x′Kx ≤ 1}, where K is a positive definite
symmetric matrix, to be strongly reachable (in the terminology of Exercise 4.24),
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it is sufficient that for some positive definite symmetric matrix M and for some
scalar β ∈ (0, 1) we have

K = A′

[

(1− β)K−1 − 1− β

β
GQ−1G′ +BR−1B′

]−1

A+M,

K−1 − 1

β
GQ−1G′ : positive definite.

Show also that if the above relations are satisfied, the linear stationary policy µ∗,
where µ∗(x) = Lx and

L = −(R+B′FB)−1B′FA,

F =

[

(1− β)K−1 − 1− β

β
GQ−1G′

]−1

,

achieves reachability of the ellipsoid X = {x | x′Kx ≤ 1}. Furthermore, the
matrix (A + BL) has all its eigenvalues strictly within the unit circle. (For a
proof together with a computational procedure for finding matrices K satisfying
the above, see [Ber71] and [Ber72].)

4.26

Consider the M/M/1 queueing problem with variable service rate (Example
4.6.5). Assume that no arrivals are allowed (λ = 0), and one can either serve a
customer at rate µ or refuse service (M = {0, µ}). Let the cost rates for customer
waiting and service be c(i) = ci and q(µ), respectively, with q(0) = 0.

(a) Show that an optimal policy is to always serve an available customer if

q(µ)

µ
≤ c

β
,

and to always refuse service otherwise.

(b) Analyze the problem when the cost rate for waiting is instead c(i) = ci2.

4.27

An enterprising financier dreams of making it big in the currency market. He
may trade between n currencies c1, ..., cn and can convert a unit of ci to rij units
of cj , for any currency pair (ci, cj) (we assume rij > 0 for all i and j). He is
looking for a cycle of currencies

ci1 → ci2 → . . . → cik → ci1

which is such that
ri1i2 · ri2i3 · · · rik?1ik · riki1 > 1.

(Such a cycle is also known as an arbitrage opportunity, i.e., an opportunity of
sure profit).

(a) Formulate a multiplicative cost SSP problem, which has strictly positive
optimal costs if and only if there is no arbitrage opportunity.

(b) Give an algorithm that detects the existence of an arbitrage opportunity.
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4.28 (Monotone Increasing Affine Monotonic Models)

Consider the affine monotonic problem of Section 4.5 under the compactness
Assumption 4.5.2 and the condition TµJ̄ ≥ J̄ for all µ ∈ M. Derive the following
generalizations of the results of Section 4.1 that were obtained under Assumption
P, by following the lines of proof of that section.

(a) We have J∗ = TJ∗ and Jµ = TµJµ for every stationary policy µ.

(b) A stationary policy µ is optimal if and only if TJ∗ = TµJ
∗.

(c) We have T kJ → J∗ for all J ∈ En
+ satisfying J̄ ≤ J ≤ J∗.

(d) We have T kJ → J∗ for all J ∈ ℜn
+ if in addition there exists an optimal

policy that is contractive.

4.29 (Monotone Decreasing Affine Monotonic Models)

Consider the affine monotonic problem of Section 4.5 under the condition TµJ̄ ≤
J̄ for all µ ∈ M. Derive the following generalizations of the results of Section 4.1
that were obtained under Assumption N, by following the lines of proof of that
section.

(a) We have J∗ = TJ∗ and Jµ = TµJµ for every stationary policy µ.

(b) A stationary policy µ is optimal if and only if TJµ = TµJµ.

(c) We have T kJ → J∗ for all J ∈ En
+ satisfying J̄ ≥ J ≥ J∗.


